1
0
Fork 0
projecteuler/primes.c

112 lines
2.6 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
/*
* unmemoized version of isPrime
* runs in O(sqrt(n))
*
*/
bool isPrime(long n) {
if (n == 0 || n == 1)
return false;
long sqrtn = (long) sqrt (n);
for (long i = 2; i <= sqrtn; i++) {
if (n % i == 0)
return false;
}
return true;
}
/*
* memoized version of isPrime
* primes: list of primes < n
* runs in O(sqrt(n)/ln(n))
*
*/
bool isPrimeMem(long n, long* primes) {
if (n == 0 || n == 1)
return false;
if (n == 2 || n == 3)
return true;
long sqrtn = (long) sqrt (n);
long i = 0;
while (primes[i] <= sqrtn) {
if (n % primes[i++] == 0)
return false;
}
return true;
}
/*
* calculates primes <= n using dynamic programming
*
* n: non-negative int
* primes_ptr: pointer to array of primes <= n
* primesTable_ptr: pointer to array of size n+1
* where the 0-based ith element is true if i is prime
* returns: number of primes in *primes_ptr
*
* N.B. numOfPrimesUpper is an upper-bound of
* the prime-counting function, given by
* n/ln(n) * 1.25506
*
* runs in O(n * sqrt(n)/ln(n)) (not a tight bound)
*
*/
long listOfPrimes(long n, long** primes_ptr, bool** primesTable_ptr) {
*primesTable_ptr = calloc (n + 1, sizeof (bool));
if (n == 0 || n == 1) {
*primes_ptr = malloc (0);
return 0;
}
long numOfPrimesUpper = (long) (n/log(n) * 1.25506);
*primes_ptr = malloc (sizeof (long) * numOfPrimesUpper);
long numOfPrimes = 0;
for (long i = 0; i <= n; i++) {
if (isPrimeMem(i, *primes_ptr)) {
(*primes_ptr)[numOfPrimes] = i;
(*primesTable_ptr)[i] = true;
numOfPrimes++;
}
}
if (numOfPrimes < numOfPrimesUpper) {
long* tmp = realloc (*primes_ptr,
sizeof (long) * numOfPrimes);
if (tmp != NULL)
*primes_ptr = tmp;
}
return numOfPrimes;
}
/*
* calculates primes <= n are prime using the sieve of Eratosthenes
*
* runs in O(n ln(ln(n))) apparently
*
*/
void sieveOfEratosthenes(int n, bool** primesTable_ptr) {
*primesTable_ptr = malloc (sizeof (bool) * (n + 1));
for (int i = 0; i <= n; i++)
(*primesTable_ptr)[i] = true;
(*primesTable_ptr)[0] = false;
(*primesTable_ptr)[1] = false;
int sqrtn = (int) sqrt (n);
for (int i = 0; i <= sqrtn; i++) {
if ((*primesTable_ptr)[i] == true) {
for (int j = i*2; j <= n; j += i) {
(*primesTable_ptr)[j] = false;
}
}
}
}