1
0
Fork 0
projecteuler/21.c

45 lines
1.3 KiB
C

/*
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
*/
#include <stdio.h>
#include <stdlib.h>
int sumOfDivisors[10001];
void findSumOfProperDivisors () {
sumOfDivisors[0] = 0; // placeholder
for (int i = 1; i <= 10000; i++) {
int sumOfDivisorsOfI = 1;
for (int j = 2; j * j <= i; j++) {
if (j * j == i)
sumOfDivisorsOfI += j;
else if (i % j == 0)
sumOfDivisorsOfI += j + i / j;
}
sumOfDivisors[i] = sumOfDivisorsOfI;
}
}
int sumOfAmicable () {
int sum = 0;
for (int i = 1; i <= 10000; i++) {
int value = sumOfDivisors[i];
if (value <= 10000 && value != i && sumOfDivisors[value] == i) {
sum += i;
printf("%d, %d\n", i, value);
}
}
return sum;
}
int main (int argc, char* argv[]) {
findSumOfProperDivisors ();
printf ("%d\n", sumOfAmicable ());
}