
Strong Normalization for
Simply Typed Call-by-Push-Value

Jonathan Chan

1 Introduction
The goal of this project is to mechanize a proof of strong normalization for call-by-push-value (CBPV). It
follows work by Forster, Schäfer, Spies, and Stark (TODO: cite) on mechanizing the metatheory of CBPV
in Rocq, but instead adapts the proof technique from POPLMark Reloaded (TODO: cite).

Both proofs, and mine, follow the same sequence of steps: we define a logical relation that semantically
interpret types as sets of terms, show that these sets are backward closed by reduction and that they contain
only strongly normalizing terms, prove a fundamental soundness theorem that places well typed terms in the
semantic interpretations of their types, and conclude that well typed terms must be strongly normalizing.
The difference lies in how strong normalization (and reduction) is defined. The Rocq mechanization uses
a traditional definition of strong normalization as an accessibility relation, while POPLMark Reloaded and
this project use an inductive characterization of strong normalization, then prove it sound with respect to
the traditional definition.

In contrast to both prior works, which use Rocq, Agda, or Beluga, this project is mechanized in Lean.
A secondary purpose of this project is to assess the capabilities of Lean for PL metatheory, especially when
making heavy use of mutually defined inductive types. I have implemented a mutual induction tactic for Lean
(TODO: link), and the mutual values and computations of CBPV, combined with the even more complex
mutual inductives from POPLMark Reloaded, make it an attractive test case to test the tactic’s robustness.

This report is divided in roughly the same shape as the proof development. Section 2 introduces the
syntax and the typing rules for CBPV (Syntax.lean, Typing.lean). Then the inductive characterization of
strong normalization is defined in Section 3 (NormalInd.lean), followed by the logical relation in Section 4
(OpenSemantics.lean). The central theorem of strong normalization is proven in Section 5 as a corollary
of the fundamental theorem for the logical relation (Soundness.lean, Normalization.lean). To ensure
that the inductive characterization is correct, Section 6 shows that it implies the traditional definition of
strong normalization (NormalAcc.lean). This latter definition and proof depends on small-step reduction
on open terms, whose properties are omitted here (Reduction.lean). In general, I gloss over details about
substitution and reduction, since I’m interested in presenting the structure of the strong normalization proof
and not the minutiae of syntax and binding. Finally, I discuss the merits of this proof technique and the
challenges posed by using Lean in Section 7.

2 Syntax and Typing

A ::= Unit | A1 +A2 | U B value types
B ::= A→ B | FA computation types

v,w ::= x | unit | inl v | inr v | thunkm values
m,n ::= force v | λx.m | m v | return v computations

| let x ← m in n
| case v of {inl y ⇒ m ; inr z ⇒ n}

Γ ::= · | Γ, x :A typing contexts
σ ::= · | σ, x 7→ v simultaneous substitutions

1

The grammar of the CBPV for this project is given above. Terms and their types are divided between
values and computations. Values are variables, unit, injections into a sum type, or a thunked computation,
while computations are forcing thunks, functions, applications, returning values, binding returned values,
and case analysis on sums. There are only value variables and no computation variables, since they represent
terms that require no more work to be done on them ready to be substituted in, and typing contexts similarly
only contain value types. I use t to refer to terms that may be either values or computations.

Although the syntax is presented nominally, the mechanization uses an unscoped de Bruijn indexed
representation of variables, along with simultaneous substitutions σ mapping variables to values, with · as
the identity substitution. Applying a substitution is represented as v[σ] and m[σ], and implemented in terms
of renamings, which are mappings from variables to other variables.

This is not the usual complete CBPV language, since it’s missing both value tuples and computation tu-
ples. I exclude them because they are syntactically not much more interesting than returns, whose eliminator
is shaped like pattern matching on a singleton value tuple, and than thunks, whose eliminator is shaped like
projection on a singleton computation tuple. In contrast, I do include sums, which represent the only way
a computation can branch.

The typing rules below are standard for the values and computations included. The judgements for values
and computations are defined mutually, just as are the types and the terms.

Γ ` v : A value typing

T-Var
x : A ∈ Γ
Γ ` x : A

T-Unit

Γ ` unit : Unit

T-Inl
Γ ` v : A1

Γ ` inl v : A1 +A2

T-Inr
Γ ` v : A2

Γ ` inr v : A1 +A2

T-Thunk
Γ ` m : B

Γ ` thunkm : U B

Γ ` m : B computation typing

T-Force
Γ ` v : U B

Γ ` force v : B

T-Lam
Γ, x :A ` m : B

Γ ` λx.m : A→ B

T-App
Γ ` m : A→ B Γ ` v : A

Γ ` m v : B

T-Ret
Γ ` v : A

Γ ` return v : FA

T-Let
Γ ` m : FA Γ, x :A ` n : B

Γ ` let x ← m in n : B

T-Case
Γ ` v : A1 +A2
Γ, y :A1 ` m : B
Γ, z :A2 ` n : B

Γ ` case v of {inl y ⇒ m ; inr z ⇒ n} : B

3 Strong Normalization as an Inductive Definition
The idea behind the inductive characterization of strong normalization is to describe case by case when a
term is strongly normal, rather than showing a posteriori which terms are strongly normal. This is done
in conjunction with defining strongly neutral terms, which are blocked from β-reduction, and strong head
reduction, which expands the set from normal forms to terms which must reduce to normal forms.

The general recipe for defining these for CBPV is as follows:
• The only strongly neutral values are variables.
• Strongly neutral computations are eliminators whose head positions are strongly neutral, while

all other subterms are strongly normal.
• Strongly normal values are constructors whose subterms are strongly normal, or strongly neutral

values, i.e. variables.
• Strongly normal computations are constructors whose subterms are strongly normal, or strongly

neutral computations, or computations which reduce to strongly normal computations (backward
closure).

• Strong head reduction consists of β reductions for all eliminators around the corresponding
constructors, and congruent reductions in head positions.

2

Additionally, strong reduction requires premises asserting that the subterms that may “disappear” after
reduction be strongly normal so that backward closure actually closes over strongly normal terms. These
subterms are the values that get substituted into a computation, which may disappear if the computation
never actually uses the binding, as well as computation branches not taken.

Because we’re dealing with CBPV, values have no β reductions, so there’s no need for head reduction
of values as there are no heads. Furthermore, there is only one strongly neutral value, so we inline the
definition as a variable where needed, but also write it as v ∈ SNe for symmetry as appropriate. Otherwise,
the remaining four judgements are defined mutually below.

m ∈ SNe strongly neutral computations

SNe-Force

force x ∈ SNe

SNe-App
m ∈ SNe v ∈ SN

m v ∈ SNe

SNe-Let
m ∈ SNe n ∈ SN
let x ← m in n ∈ SNe

SNe-Case
m ∈ SN n ∈ SN

case x of {inl y ⇒ m ; inr z ⇒ n} ∈ SNe

v ∈ SN strongly normal values

SN-Var

x ∈ SN

SN-Unit

unit ∈ SN

SN-Inl
v ∈ SN

inl v ∈ SN

SN-Inr
v ∈ SN

inr v ∈ SN

SN-Thunk
m ∈ SN

thunkm ∈ SN

m ∈ SN strongly normal computations

SN-Lam
m ∈ SN

λx.m ∈ SN

SN-Ret
v ∈ SN

return v ∈ SN

SN-SNe
m ∈ SNe
m ∈ SN

SN-Red
m n n ∈ SN

m ∈ SN

m n strong head reduction

SR-Thunk

force (thunkm) m

SR-Lam
v ∈ SN

(λx.m) v m[x 7→ v]

SR-Ret
v ∈ SN

let x ← (return v) inm m[x 7→ v]

SR-Inl
v ∈ SN n ∈ SN

case (inl v) of {inl y ⇒ m ; inr z ⇒ n} m[y 7→ v]

SR-Inr
v ∈ SN m ∈ SN

case (inr v) of {inl y ⇒ m ; inr z ⇒ n} n[z 7→ v]

SR-App
m n

m v n v

SR-Let
m m′

let x ← m in n let x ← m′ in n

m ∗ n reflexive, transitive closure of head reduction

SRs-Refl

m ∗ m

SRs-Trans
m m′ m′ ∗ n

m ∗ n

3

We also need the reflexive, transitive closure of head reduction, defined as a separate inductive above.
Now we show a few simple lemmas about it, along with an inversion lemma for forcing (other inversion
lemmas hold, but this is the only one we need). I present them below as judgement pseudorules using a
dashed line to indicate that they are admissible rules. These are all proven either by construction or by
induction on the first premise.

SRs-Once
m n

m ∗ n
−−−−

SRs-Trans’
m ∗ m′ m′ ∗ n

m ∗ n
−−−−−−−−−−−−

SRs-App
m ∗ n

m v ∗ n v
−−−−−−

SRs-Let
m ∗ m′

let x ← m in n ∗ let x ← m′ in n
−−−−−−−−−−−−−−−−−−

SN-Reds
m ∗ n n ∈ SN

m ∈ SN
−−−−−−−−−−−

SN-Force-inv
force v ∈ SN

v ∈ SN
−−−−−−−

The most important property of strongly normal terms that we need is antirenaming, which states that
undoing a renaming does not change the term’s normalization or reduction behaviour. A crucial property
that follows is extensionality of applications, which is an inversion lemma specifically when the application
argument is a variable.

Lemma 1 (Antirenaming). Let σ be a renaming, i.e. a substitution mapping variables to variables. Then
the following hold:

1. If m[σ] ∈ SNe then m ∈ SNe.
2. If v[σ] ∈ SN then v ∈ SN.
3. If m[σ] ∈ SN then m ∈ SN.
4. If m[σ] n then there exists some n′ such that n = n′[σ] and m n′.

Proof. By mutual induction on the four derivations of m[σ] ∈ SNe, v[σ] ∈ SN, m[σ] ∈ SN, and m[σ] n.

Corollary 2 (Extensionality). If m x ∈ SN then m ∈ SN.

Proof. By induction on the derivation of strongly normal values. The possible cases are SN-SNe and SN-
Red. Destructing the premise of the former gives m ∈ SNe, and we conclude using rule SN-SNe again.
In the latter case, we have m x n and n ∈ SN; destructing on the reduction yields the possible cases
rules SR-Lam and SR-App. In the first case, we have m[x 7→ v] ∈ SN, so the goal holds by Antirenaming.
In the second case, we have m n and n x ∈ SN, so by the induction hypothesis, we have n ∈ SN, and we
conclude using rule SN-Red.

4 Logical Relation on Open Terms
The next step is to define a logical relation that semantically interprets types as sets of open terms. The key
property we need from these sets is that they contain only strongly normal terms. Because we are working
with open terms to prove normalization and not just termination of evaluation of closed terms, we need to
consider variables and strongly neutral terms. Having no other information about them other than their
strong neutrality, we require that the interpretation sets always contain all strongly neutral terms.

The logical relation on simple types can be defined by induction on the structure of the type. However,
I want to maximize the amount of mutual inductives used in this project, so we instead define the logical
relation as an inductive binary relation between the type and the set of terms of its interpretation, denoted
as JAK↘ P and JBK↘ P below. I use set builder notation to define the sets and set membership, but they
are implemented in the mechanization as functions that take terms and return propositions and as function
applications. Here, the conjunctions (∧), disjunctions (∨), equalities (=), implications (⇒), and universal
(∀) and existential (∃) quantifiers are part of the metatheory, not part of the object language.

4

JAK↘ P semantic interpretation of value types

LR-Unit

JUnitK↘ {v | v ∈ SNe ∨ v = unit}

LR-U
JBK↘ P

JU BK↘ {v | force v ∈ P}

LR-Sum
JA1K↘ P JA2K↘ Q

JA1 +A2K↘ {v | v ∈ SNe ∨ (∃w. v = inl w ∧ w ∈ P) ∨ (∃w. v = inr w ∧ w ∈ Q)}

JBK↘ P semantic interpretation of computation types

LR-F
JAK↘ P

JFAK↘ {m | (∃n.m ∗ n ∧ n ∈ SNe) ∨ (∃v.m ∗ return v ∧ v ∈ P)}

LR-Arr
JAK↘ P JBK↘ Q

JA→ BK↘ {m | ∀v. v ∈ P ⇒ m v ∈ Q}

The terms in the interpretation of a type can be characterized in two different ways: by what constructor
of that type they reduce to, or by how they act when eliminated by an eliminator for that type. For the
former, we need to explicitly include the possibility of the term being strongly neutral. I chose the following
characterizations because they seemed the simplest to me, but the alternate choices likely work as well.

• Values in the interpretation of the unit type are either variables or the unit value.
• Values are in the interpretation of the U B type if they can be forced to computations in the

interpretation of the B type.
• Values in the interpretation of the sum type A1 + A2 are either variables, left injections whose

values are in the interpretation of A1, or right injections whose values are in that of A2.
• Computations in the interpretation of the F A type reduce to either a neutral computation or a

return whose value is in the interpretation of A.
• Computations are in the interpretation of the function type A → B if applying them to values

in the interpretation of A yields computations in the interpretation of B.
By this description, it sounds like the logical relation can be presented directly as a relation between a

type and a term; this presentation is given in Fig. 1. Unfortunately, this is not well defined, since the logical
relation appears in a negative position (to the left of an implication) in the premise of rule LRPP-Arr.
The alternate presentation can be interpreted as a function match on the term and the type and returning
the conjunction of its premises, but I wanted to use a mutually defined inductive definition.

v ∈ JAK m ∈ JBK

LR’-Unit-var

x ∈ JUnitK

LR’-Unit-unit

unit ∈ JUnitK

LR’-Sum-var

x ∈ JA1 +A2K

LR’-Sum-inl
v ∈ JA1K

inl v ∈ JA1 +A2K

LR’-Sum-inr
v ∈ JA2K

inr v ∈ JA1 +A2K

LR’-Force
force v ∈ JBK
v ∈ JU BK

LR’-F-var
m ∗ n n ∈ SNe

m ∈ JFAK

LR’-F-ret
m ∗ return v v ∈ JAK

m ∈ JFAK

LR’-Arr
∀v. v ∈ JAK⇒ m v ∈ JBK

m ∈ JA→ BK

Figure 1: Alternate presentation of the logical relation

Using the inductive presentation of the logical relation, there are three easy properties to show: inter-
pretability, which states that all types have an interpretation; determinism, which states that the interpre-
tation indeed behaves like a function from types to sets of terms; and backward closure, which states that

5

the interpretations of computation types are backward closed under multi-step head reduction. The last
property is why rule LRPP-F-var needs to include computations that reduce to strongly neutral terms or
returns, not merely ones that are such terms.

Lemma 3 (Interpretability).
1. Given A, there exists P such that JAK↘ P.
2. Given B, there exists P such that JBK↘ P.

Proof. By mutual induction on the types A and B.

Lemma 4 (Determinism).
1. If JAK↘ P and JAK↘ Q then P = Q.
2. If JBK↘ P and JBK↘ Q then P = Q.

Proof. By mutual induction on the first derivations of the logical relation, then by cases on the second
derivations.

Lemma 5 (Backward closure). Given JBK↘ P and m ∗ n, if n ∈ P then m ∈ P.

Proof. By induction on the derivation of the logical relation.

The final key property is adequacy, which states that the interpretations of types must contain all strongly
neutral terms and must contain only strongly normal terms. Such sets are said to be reducibility candidates.

Definition 1 (Reducibility candidates). A reducibility candidate is a set of terms P where, given a term t,
if t ∈ SNe then t ∈ P, and if t ∈ P then t ∈ SN.

Lemma 6 (Adequacy).
1. If JAK↘ P then P is a reducibility candidate.
2. If JBK↘ P then P is a reducibility candidate.

Proof. By mutual induction on the derivations of the logical relation. Rule SN-Force-inv is used in the
S-U case, while rule SN-Reds is used in the rule S-F case. In the S-Arr case on A→ B, where JAK↘ P
and JBK ↘ Q, to show the second part of its interpretation being a reducibility candidate, we are given m
such that for every v ∈ P, m v ∈ Q, and the goal is to show that m ∈ SN. By the induction hypotheses,
picking an arbitrary variable x, we have that x ∈ P (since it is neutral) and that m x ∈ SN. Then the goal
holds by Extensionality.

5 Semantic Typing and the Fundamental Theorem
Now that we know that the interpretations contain only strongly normal terms, our goal is to show that well
typed terms inhabit the interpretations of their types. We first define what it means for a substitution to be
semantically well formed with respect to a context.

Definition 2 (Semantic well-formedness of substitutions). A substitution σ is well formed with respect to
a context Γ, written Γ � σ, if for every x : A ∈ Γ and JAK↘ P, we have x[σ] ∈ P. In short, the substitution
maps variables in the context to values in the interpretations of their types.

These judgements can be built up inductively, as demonstrated by the below admissible rules, which are
proven by cases.

Γ � σ admissible semantic substitution well-formedness

S-Nil

Γ � ·
− −

S-Cons
Γ � σ JAK↘ P v ∈ P

Γ, x :A � σ, x 7→ v
−−−−−−−−−−−−−−−−

6

Then we can define semantic typing in terms of the logical relation, using semantic well formedness of
substitutions to handle the context.

Definition 3 (Semantic typing).
1. v semantically has type A under context Γ, written Γ � v : A, if for every σ such that Γ � σ,

there exists an interpretation JAK↘ P such that v[σ] ∈ P.
2. m semantically has type B under context Γ, written Γ � m : B, if for every σ such that Γ � σ,

there exists an interpretation JBK↘ P such that m[σ] ∈ P.

Semantic typing follows exactly the same shape of rules as syntactic typing, so I present them here
as admissible rules. All the hard work happens in these lemmas; the fundamental theorem of soundness
of syntactic typing with respect to semantic typing then follows directly. Normalization holds as an easy
corollary.

Γ � v : A admissible semantic value typing

S-Var
x : A ∈ Γ

Γ � x : A
−−−−−

S-Unit

Γ � unit : Unit
−−−−−−−−

S-Inl
Γ � v : A1

Γ � inl v : A1 +A2

−−−−−−−−−−

S-Inr
Γ � v : A2

Γ � inr v : A1 +A2

−−−−−−−−−−

S-Thunk
Γ � m : B

Γ � thunkm : U B
−−−−−−−−−−

Γ � m : B admissible semantic computation typing

S-Force
Γ � v : U B

Γ � force v : B
−−−−−−−−

S-Arr
Γ, x :A � m : B

Γ � λx.m : A→ B
−−−−−−−−−−

S-App
Γ � m : A→ B Γ � v : A

Γ � m v : B
−−−−−−−−−−−−−−−−

S-Ret
Γ � v : A

Γ � return v : FA
−−−−−−−−−

S-Let
Γ � m : FA Γ, x :A � n : B

Γ � let x ← m in n : B
−−−−−−−−−−−−−−−−−

S-Case
Γ � v : A1 +A2
Γ, y :A1 � m : B
Γ, z :A2 � n : B

Γ � case v of {inl y ⇒ m ; inr z ⇒ n} : B
−−−−−−−−−−−−−−−−−−−−−−

Proof. By construction using prior lemmas, in particular rule SRs-Let in case S-Let; Interpretability in
cases S-Var, S-Inl, S-Inr, and S-Lam; Determinism in cases S-Lam and S-App; Backward closure in cases
S-Thunk, S-Lam, S-Let, and S-Case; and Adequacy in cases S-Lam, S-Let, and S-Case.

Theorem 7 (Soundness).
1. If Γ ` v : A then Γ � v : A.
2. If Γ ` m : B then Γ � m : B.

Proof. By mutual induction on the syntactic typing derivations, using the admissible semantic typing rules.

Corollary 8 (Normalization).
1. If Γ ` v : A then v ∈ SN.
2. If Γ ` m : B then m ∈ SN.

Proof. By Soundness, using the identity substitution and rule S-Nil, the well typed terms inhabit the
semantic interpretations of their types. Then by Adequacy, they are also strongly normalizing.

7

6 Strong Normalization as an Accessibility Relation
v ∈ sn,m ∈ sn strongly normalizing terms

sn-Val
∀w. v w ⇒ w ∈ sn

v ∈ sn

sn-Com
∀n.m n ⇒ n ∈ sn

m ∈ sn

m sn n strong head reduction

sr-Thunk

force (thunkm) sn m

sr-Lam
v ∈ sn

(λx.m) v sn m[x 7→ v]

sr-Ret
v ∈ sn

let x ← (return v) inm sn m[x 7→ v]

sr-Inl
v ∈ sn n ∈ sn

case (inl v) of {inl y ⇒ m ; inr z ⇒ n} sn m[y 7→ v]

sr-Inr
v ∈ sn m ∈ sn

case (inr v) of {inl y ⇒ m ; inr z ⇒ n} sn n[z 7→ v]

sr-App
m sn n

m v sn n v

sr-Let
m sn m′

let x ← m in n sn let x ← m′ in n

m ∈ ne neutral computations

ne-Force

force x ∈ ne

ne-App
m ∈ ne
m v ∈ ne

ne-Let
m ∈ ne

let x ← m in n ∈ ne

ne-Case

case x of {inl y ⇒ m ; inr z ⇒ n} ∈ ne

sn-App-inv1
m v ∈ sn

m ∈ sn
−−−−−

sn-App-inv2
m v ∈ sn

v ∈ sn
−−−−−

sn-Let-inv1
let x ← m in n ∈ sn

m ∈ sn
−−−−−−−−−−

sn-Let-inv2
let x ← m in n ∈ sn

n ∈ sn
−−−−−−−−−−

Proof. By induction on the premises of strongly normal terms, using congruence of single-step reduction.

Definition 4 (Neutral values). A value is neutral, written v ∈ ne, if it is a variable.

Lemma 9 (Preservation).
1. If v w and v ∈ ne then w ∈ ne.
2. If m n and m ∈ ne then n ∈ ne.

Proof. By mutual induction on the single-step reductions.

Definition 5 (Strongly neutral computations). A strongly neutral computation, written m ∈ sne, is a
computation that is both neutral and strongly normalizing, i.e. m ∈ ne and m ∈ sn.

v ∈ sn admissible strongly normal values

sn-Var

x ∈ sn
− − −

sn-Unit

unit ∈ sn
−−−−−

sn-Inl
v ∈ sn

inl v ∈ sn
−−−−−

sn-Inr
v ∈ sn

inr v ∈ sn
−−−−−

sn-Thunk
m ∈ sn

thunkm ∈ sn
−−−−−−−

8

m ∈ sn admissible strongly normal computations

sn-Lam
m ∈ sn

λx.m ∈ sn
−−−−−−

sn-Ret
v ∈ sn

return v ∈ sn
−−−−−−−

sn-Force
v ∈ sn

force v ∈ sn
−−−−−−

sn-App
m ∈ sne v ∈ sn

m v ∈ sn
−−−−−−−−−−

sn-Let
m ∈ sne n ∈ sn

let x ← m in n ∈ sn
−−−−−−−−−−

sn-Case
v ∈ sne m ∈ sn n ∈ sn

case v of {inl y ⇒ m ; inr z ⇒ n} ∈ sn
−−−−−−−−−−−−−−−−−−−−

Proof. Rules sn-App, sn-Let, and sn-Case are proven by double induction on the two derivations of
strongly normal terms. Intuitively, we want to show that if the conclusion steps, then it steps to a strongly
normal term, knowing by the induction hypotheses that if their subterms reduce, then they also reduce to
strongly normal terms. Neutrality of the term in head position eliminates cases where the conclusion β-
reduces, leaving only the congruent reductions. Because single-step reduction only steps in one subterm, we
only need the induction hypothesis for that reducing subterm, so the double induction is really a lexicographic
induction on the two derivations. We additionally require Preservation to carry along neutrality when the
heads reduce in cases sn-App and sn-Let. All other cases are direct by construction or by induction on
their sole premise.

Lemma 10 (Antisubstitution (sn)). If m[x 7→ v] ∈ sn and v ∈ sn then m ∈ sn.

Proof. By induction on the derivation of m[x 7→ v] ∈ sn.

m ∈ sn head expansion

sn-Force-Thunk
m ∈ sn

force (thunkm) ∈ sn
−−−−−−−−−−−

sn-App-Lam
v ∈ sn m[x 7→ v] ∈ sn

(λx.m) v ∈ sn
−−−−−−−−−−−−−−

sn-Let-Ret
v ∈ sn m[x 7→ v] ∈ sn

let x ← (return v) inm ∈ sn
−−−−−−−−−−−−−−−

sn-Case-Inl
v ∈ sn

m[y 7→ v] ∈ sn n ∈ sn

case (inl v) of {inl y ⇒ m ; inr z ⇒ n} ∈ sn
−−−−−−−−−−−−−−−−−−−−−−−

sn-Case-Inr
v ∈ sn

m ∈ sn n[z 7→ v] ∈ sn

case (inr v) of {inl y ⇒ m ; inr z ⇒ n} ∈ sn
−−−−−−−−−−−−−−−−−−−−−−−

Proof. Rule sn-Force-Thunk holds directly by induction on the premise; the remaining proofs are more
complex. First, given the premise m[x 7→ v] ∈ sn (or n[z 7→ v]), use Antisubstitution (sn) to obtain m ∈ sn.
Then proceed by double (or triple) induction on the derivations of v ∈ sn and m ∈ sn (and n ∈ sn for the
case rules). Similarly to the admissible strongly normal rules, these are lexicographic inductions, except
m[x 7→ v] ∈ sn (or n[z 7→ v]) is used to satisfy the β-reduction cases.

Lemma 11 (Confluence). If m n1 and m sn n2, then either n1 = n2, or there exists some m′ such that
n1 sn m′ and n2 m′.

Proof. By induction on the derivation of m sn n2, then by cases on the derivation of m n1.

m ∈ sn backward closure in head position

sn-App-bwd
m sn n v ∈ sn n v ∈ sn

m v ∈ sn
−−−−−−−−−−−−−−−−−−

sn-Let-bwd
m sn m′ n ∈ sn let x ← m′ in n ∈ sn

let x ← m in n ∈ sn
−−−−−−−−−−−−−−−−−−−−−−−−−

9

Proof. First, use rules sn-App-inv and sn-Let-inv to obtain m ∈ sn. Then proceed by double induction on
the derivations of m ∈ sn and v ∈ sn/n ∈ sn, again as lexicographic induction. We want to show that if the
conclusion steps, then it steps to a strongly normal term. Strong reduction of the head position eliminates
the cases of β-reduction, leaving the cases where the head position steps or the other position steps. If the
head position steps, we use Confluence to join the strong reduction and the single-step reduction together,
then use the first induction hypothesis. Otherwise, we use the second induction hypothesis. We need the
last premise to step through either of the subterms, since we have no congruence rule for when the head
position is not neutral.

Lemma 12 (Backward closure). If m sn n and n ∈ sn then m ∈ sn.

Proof. By induction on the derivation of m sn n. The cases correspond exactly to each of rules sn-Force-
Thunk, sn-App-Lam, sn-Let-Ret, sn-Case-Inl, sn-Case-Inr, sn-App-bwd, and sn-Let-bwd.

Lemma 13 (Soundness (SNe)). If m ∈ SNe then m ∈ ne.

Proof. By induction on the derivation of m ∈ SNe.

Theorem 14 (Soundness (SN)).
1. If m ∈ SNe then m ∈ sn.
2. If v ∈ SN then v ∈ sn.
3. If m ∈ SN then m ∈ sn.
4. If m n then m sn n.

Proof. By mutual induction on the derivations of m ∈ SNe, v ∈ SN, m ∈ SN, and m n. The cases for the
first three correspond to the admissible strongly normal rules, using Soundness (SNe) as needed, except for
the SN-Red case, which uses Backward closure. The cases for strong reduction hold by construction.

Corollary 15. If Γ ` v : A then v ∈ sn, and if Γ ` m : B then m ∈ sn.

7 Discussion

10

	Introduction
	Syntax and Typing
	Strong Normalization as an Inductive Definition
	Logical Relation on Open Terms
	Semantic Typing and the Fundamental Theorem
	Strong Normalization as an Accessibility Relation
	Discussion

