
Strong Normalization for
Simply Typed Call-by-Push-Value

CIS 6700: Type Systems

Jonathan Chan

8 May 2025

1 Introduction
The goal of this project is to mechanize a proof of strong normalization for call-by-push-value (CBPV). It
follows work by Forster, Schäfer, Spies, and Stark [2] on mechanizing the metatheory of CBPV in Rocq, but
instead adapts the proof technique from POPLMark Reloaded [1].

Both proofs, and mine, follow the same sequence of steps: we define a logical relation that semantically
interpret types as sets of terms, show that these sets are backward closed by reduction and that they contain
only strongly normalizing terms, prove a fundamental soundness theorem that places well typed terms in the
semantic interpretations of their types, and conclude that well typed terms must be strongly normalizing.
The difference lies in how strong normalization (and reduction) is defined. The Rocq mechanization uses
a traditional definition of strong normalization as an accessibility relation, while POPLMark Reloaded and
this project use an inductive characterization of strong normalization, then prove it sound with respect to
the traditional definition.

In contrast to both prior works, which use Rocq, Agda, or Beluga, this project is mechanized in Lean.
A secondary purpose of this project is to assess the capabilities of Lean for PL metatheory, especially when
making heavy use of mutually defined inductive types. I have implemented a mutual induction tactic for
Lean1, and the mutual values and computations of CBPV, combined with the even more complex mutual
inductives from POPLMark Reloaded, make it an attractive test case to test the tactic’s robustness.

This report is divided in roughly the same shape as the proof development. Section 2 introduces the
syntax and the typing rules for CBPV (Syntax.lean, Typing.lean). Then the inductive characterization of
strong normalization is defined in Section 3 (NormalInd.lean), followed by the logical relation in Section 4
(OpenSemantics.lean). The central theorem of strong normalization is proven in Section 5 as a corollary
of the fundamental theorem for the logical relation (Soundness.lean, Normalization.lean). To ensure
that the inductive characterization is correct, Section 6 shows that it implies the traditional definition of
strong normalization (NormalAcc.lean). This latter definition and proof depends on small-step reduction
on open terms, whose properties are omitted here (Reduction.lean). In general, I gloss over details about
substitution and reduction, since I’m interested in presenting the structure of the strong normalization proof
and not the minutiae of syntax and binding. Finally, I discuss the merits of this proof technique and the
challenges posed by using Lean in Section 7.

1https://github.com/ionathanch/MutualInduction

1

https://github.com/ionathanch/MutualInduction

2 Syntax and Typing

A ::= Unit | A1 +A2 | U B value types
B ::= A→ B | FA computation types

v,w ::= x | unit | inl v | inr v | thunkm values
m,n ::= force v | λx.m | m v | return v computations

| let x ← m in n
| case v of {inl y ⇒ m ; inr z ⇒ n}

Γ ::= · | Γ, x :A typing contexts
σ ::= · | σ, x 7→ v simultaneous substitutions

The grammar of the CBPV for this project is given above. Terms and their types are divided between
values and computations. Values are variables, unit, injections into a sum type, or a thunked computation,
while computations are forcing thunks, functions, applications, returning values, binding returned values,
and case analysis on sums. There are only value variables and no computation variables, since they represent
terms that require no more work to be done on them ready to be substituted in, and typing contexts similarly
only contain value types. I use t to refer to terms that may be either values or computations.

Although the syntax is presented nominally, the mechanization uses an unscoped de Bruijn indexed
representation of variables, along with simultaneous substitutions σ mapping variables to values, with · as
the identity substitution. Applying a substitution is represented as v[σ] and m[σ], and implemented in terms
of renamings, which are mappings from variables to other variables.

This is not the usual complete CBPV language, since it’s missing both value tuples and computation tu-
ples. I exclude them because they are syntactically not much more interesting than returns, whose eliminator
is shaped like pattern matching on a singleton value tuple, and than thunks, whose eliminator is shaped like
projection on a singleton computation tuple. In contrast, I do include sums, which represent the only way
a computation can branch.

The typing rules below are standard for the values and computations included. The judgements for values
and computations are defined mutually, just as are the types and the terms.

Γ ` v : A value typing

T-Var
x : A ∈ Γ
Γ ` x : A

T-Unit

Γ ` unit : Unit

T-Inl
Γ ` v : A1

Γ ` inl v : A1 +A2

T-Inr
Γ ` v : A2

Γ ` inr v : A1 +A2

T-Thunk
Γ ` m : B

Γ ` thunkm : U B

Γ ` m : B computation typing

T-Force
Γ ` v : U B

Γ ` force v : B

T-Lam
Γ, x :A ` m : B

Γ ` λx.m : A→ B

T-App
Γ ` m : A→ B Γ ` v : A

Γ ` m v : B

T-Ret
Γ ` v : A

Γ ` return v : FA

T-Let
Γ ` m : FA Γ, x :A ` n : B

Γ ` let x ← m in n : B

T-Case
Γ ` v : A1 +A2
Γ, y :A1 ` m : B
Γ, z :A2 ` n : B

Γ ` case v of {inl y ⇒ m ; inr z ⇒ n} : B

3 Strong Normalization as an Inductive Definition
The idea behind the inductive characterization of strong normalization is to describe case by case when a
term is strongly normal, rather than showing a posteriori which terms are strongly normal. This is done

2

in conjunction with defining strongly neutral terms, which are blocked from β-reduction, and strong head
reduction, which expands the set from normal forms to terms which must reduce to normal forms.

The general recipe for defining these for CBPV is as follows:

• The only strongly neutral values are variables.
• Strongly neutral computations are eliminators whose head positions are strongly neutral, while

all other subterms are strongly normal.
• Strongly normal values are constructors whose subterms are strongly normal, or strongly neutral

values, i.e. variables.
• Strongly normal computations are constructors whose subterms are strongly normal, or strongly

neutral computations, or computations which reduce to strongly normal computations (backward
closure).

• Strong head reduction consists of β reductions for all eliminators around the corresponding
constructors, and congruent reductions in head positions.

Additionally, strong reduction requires premises asserting that the subterms that may “disappear” after
reduction be strongly normal so that backward closure actually closes over strongly normal terms. These
subterms are the values that get substituted into a computation, which may disappear if the computation
never actually uses the binding, as well as computation branches not taken.

Because we’re dealing with CBPV, values have no β reductions, so there’s no need for head reduction
of values as there are no heads. Furthermore, there is only one strongly neutral value, so we inline the
definition as a variable where needed, but also write it as v ∈ SNe for symmetry as appropriate. Otherwise,
the remaining four judgements are defined mutually below.

m ∈ SNe strongly neutral computations

SNe-Force

force x ∈ SNe

SNe-App
m ∈ SNe v ∈ SN

m v ∈ SNe

SNe-Let
m ∈ SNe n ∈ SN
let x ← m in n ∈ SNe

SNe-Case
m ∈ SN n ∈ SN

case x of {inl y ⇒ m ; inr z ⇒ n} ∈ SNe

v ∈ SN strongly normal values

SN-Var

x ∈ SN

SN-Unit

unit ∈ SN

SN-Inl
v ∈ SN

inl v ∈ SN

SN-Inr
v ∈ SN

inr v ∈ SN

SN-Thunk
m ∈ SN

thunkm ∈ SN

m ∈ SN strongly normal computations

SN-Lam
m ∈ SN

λx.m ∈ SN

SN-Ret
v ∈ SN

return v ∈ SN

SN-SNe
m ∈ SNe
m ∈ SN

SN-Red
m ; n n ∈ SN

m ∈ SN

m ; n strong head reduction

SR-Thunk

force (thunkm) ; m

SR-Lam
v ∈ SN

(λx.m) v ; m[x 7→ v]

SR-Ret
v ∈ SN

let x ← (return v) inm ; m[x 7→ v]

SR-Inl
v ∈ SN n ∈ SN

case (inl v) of {inl y ⇒ m ; inr z ⇒ n}; m[y 7→ v]

SR-Inr
v ∈ SN m ∈ SN

case (inr v) of {inl y ⇒ m ; inr z ⇒ n}; n[z 7→ v]

3

SR-App
m ; n

m v ; n v

SR-Let
m ; m′

let x ← m in n ; let x ← m′ in n

m ;∗ n reflexive, transitive closure of head reduction

SRs-Refl

m ;∗ m

SRs-Trans
m ; m′ m′ ;∗ n

m ;∗ n

We also need the reflexive, transitive closure of head reduction, defined as a separate inductive above.
Now we show a few simple lemmas about it, along with an inversion lemma for forcing (other inversion
lemmas hold, but this is the only one we need). I present them below as judgement pseudorules using a
dashed line to indicate that they are admissible rules. These are all proven either by construction or by
induction on the first premise.

SRs-Once
m ; n

m ;∗ n
−−−−

SRs-Trans’
m ;∗ m′ m′ ;∗ n

m ;∗ n
−−−−−−−−−−−−

SRs-App
m ;∗ n

m v ;∗ n v
−−−−−−

SRs-Let
m ;∗ m′

let x ← m in n ;∗ let x ← m′ in n
−−−−−−−−−−−−−−−−−−

SN-Reds
m ;∗ n n ∈ SN

m ∈ SN
−−−−−−−−−−−

SN-Force-inv
force v ∈ SN

v ∈ SN
−−−−−−−

The most important property of strongly normal terms that we need is antirenaming, which states that
undoing a renaming does not change the term’s normalization or reduction behaviour. A crucial property
that follows is extensionality of applications, which is an inversion lemma specifically when the application
argument is a variable.

Lemma 1 (Antirenaming). Let σ be a renaming, i.e. a substitution mapping variables to variables. Then
the following hold:

1. If m[σ] ∈ SNe then m ∈ SNe.
2. If v[σ] ∈ SN then v ∈ SN.
3. If m[σ] ∈ SN then m ∈ SN.
4. If m[σ] ; n then there exists some n′ such that n = n′[σ] and m ; n′.

Proof. By mutual induction on the four derivations of m[σ] ∈ SNe, v[σ] ∈ SN, m[σ] ∈ SN, and m[σ] ; n.

Corollary 2 (Extensionality). If m x ∈ SN then m ∈ SN.

Proof. By induction on the derivation of strongly normal values. The possible cases are SN-SNe and SN-
Red. Destructing the premise of the former gives m ∈ SNe, and we conclude using rule SN-SNe again.
In the latter case, we have m x ; n and n ∈ SN; destructing on the reduction yields the possible cases
rules SR-Lam and SR-App. In the first case, we have m[x 7→ v] ∈ SN, so the goal holds by Antirenaming.
In the second case, we have m ; n and n x ∈ SN, so by the induction hypothesis, we have n ∈ SN, and we
conclude using rule SN-Red.

4 Logical Relation on Open Terms
The next step is to define a logical relation that semantically interprets types as sets of open terms. The key
property we need from these sets is that they contain only strongly normal terms. Because we are working
with open terms to prove normalization and not just termination of evaluation of closed terms, we need to

4

consider variables and strongly neutral terms. Having no other information about them other than their
strong neutrality, we require that the interpretation sets always contain all strongly neutral terms.

The logical relation on simple types can be defined by induction on the structure of the type. However,
I want to maximize the amount of mutual inductives used in this project, so we instead define the logical
relation as an inductive binary relation between the type and the set of terms of its interpretation, denoted
as JAK↘ P and JBK↘ P below. I use set builder notation to define the sets and set membership, but they
are implemented in the mechanization as functions that take terms and return propositions and as function
applications. Here, the conjunctions (∧), disjunctions (∨), equalities (=), implications (⇒), and universal
(∀) and existential (∃) quantifiers are part of the metatheory, not part of the object language.

JAK↘ P semantic interpretation of value types

LR-Unit

JUnitK↘ {v | v ∈ SNe ∨ v = unit}

LR-U
JBK↘ P

JU BK↘ {v | force v ∈ P}

LR-Sum
JA1K↘ P JA2K↘ Q

JA1 +A2K↘ {v | v ∈ SNe ∨ (∃w. v = inl w ∧ w ∈ P) ∨ (∃w. v = inr w ∧ w ∈ Q)}

JBK↘ P semantic interpretation of computation types

LR-F
JAK↘ P

JFAK↘ {m | (∃n.m ;∗ n ∧ n ∈ SNe) ∨ (∃v.m ;∗ return v ∧ v ∈ P)}

LR-Arr
JAK↘ P JBK↘ Q

JA→ BK↘ {m | ∀v. v ∈ P ⇒ m v ∈ Q}

The terms in the interpretation of a type can be characterized in two different ways: by what constructor
of that type they reduce to, or by how they act when eliminated by an eliminator for that type. For the
former, we need to explicitly include the possibility of the term being strongly neutral. I chose the following
characterizations because they seemed the simplest to me, but the alternate choices likely work as well.

• Values in the interpretation of the unit type are either variables or the unit value.
• Values are in the interpretation of the U B type if they can be forced to computations in the

interpretation of the B type.
• Values in the interpretation of the sum type A1 + A2 are either variables, left injections whose

values are in the interpretation of A1, or right injections whose values are in that of A2.
• Computations in the interpretation of the F A type reduce to either a neutral computation or a

return whose value is in the interpretation of A.
• Computations are in the interpretation of the function type A → B if applying them to values

in the interpretation of A yields computations in the interpretation of B.

By this description, it sounds like the logical relation can be presented directly as a relation between a
type and a term; this presentation is given in Figure 1. Unfortunately, this is not well defined, since the
logical relation appears in a negative position (to the left of an implication) in the premise of rule LR’-Arr.
The alternate presentation can be interpreted as a function match on the term and the type and returning
the conjunction of its premises, but I wanted to use a mutually defined inductive definition.

5

v ∈ JAK m ∈ JBK semantic inhabitance of types

LR’-Unit-var

x ∈ JUnitK

LR’-Unit-unit

unit ∈ JUnitK

LR’-Sum-var

x ∈ JA1 +A2K

LR’-Sum-inl
v ∈ JA1K

inl v ∈ JA1 +A2K

LR’-Sum-inr
v ∈ JA2K

inr v ∈ JA1 +A2K

LR’-Force
force v ∈ JBK
v ∈ JU BK

LR’-F-var
m ;∗ n n ∈ SNe

m ∈ JFAK

LR’-F-ret
m ;∗ return v v ∈ JAK

m ∈ JFAK

LR’-Arr
∀v. v ∈ JAK⇒ m v ∈ JBK

m ∈ JA→ BK

Figure 1: Alternate presentation of the logical relation

Using the inductive presentation of the logical relation, there are three easy properties to show: inter-
pretability, which states that all types have an interpretation; determinism, which states that the interpre-
tation indeed behaves like a function from types to sets of terms; and backward closure, which states that
the interpretations of computation types are backward closed under multi-step head reduction. The last
property is why rule LR’-F-var needs to include computations that reduce to strongly neutral terms or
returns, not merely ones that are such terms.

Lemma 3 (Interpretability).

1. Given A, there exists P such that JAK↘ P.
2. Given B, there exists P such that JBK↘ P.

Proof. By mutual induction on the types A and B.

Lemma 4 (Determinism).

1. If JAK↘ P and JAK↘ Q then P = Q.
2. If JBK↘ P and JBK↘ Q then P = Q.

Proof. By mutual induction on the first derivations of the logical relation, then by cases on the second
derivations.

Lemma 5 (Backward closure). Given JBK↘ P and m ;∗ n, if n ∈ P then m ∈ P.

Proof. By induction on the derivation of the logical relation.

The final key property is adequacy, which states that the interpretations of types must contain all strongly
neutral terms and must contain only strongly normal terms. Such sets are said to be reducibility candidates.

Definition 1 (Reducibility candidates). A reducibility candidate is a set of terms P where, given a term t,
if t ∈ SNe then t ∈ P, and if t ∈ P then t ∈ SN.

Lemma 6 (Adequacy).

1. If JAK↘ P then P is a reducibility candidate.
2. If JBK↘ P then P is a reducibility candidate.

Proof. By mutual induction on the derivations of the logical relation. Rule SN-Force-inv is used in the
S-U case, while rule SN-Reds is used in the rule S-F case. In the S-Arr case on A→ B, where JAK↘ P
and JBK ↘ Q, to show the second part of its interpretation being a reducibility candidate, we are given m
such that for every v ∈ P, m v ∈ Q, and the goal is to show that m ∈ SN. By the induction hypotheses,
picking an arbitrary variable x, we have that x ∈ P (since it is neutral) and that m x ∈ SN. Then the goal
holds by Extensionality.

6

5 Semantic Typing and the Fundamental Theorem
Now that we know that the interpretations contain only strongly normal terms, our goal is to show that well
typed terms inhabit the interpretations of their types. We first define what it means for a substitution to be
semantically well formed with respect to a context.

Definition 2 (Semantic well-formedness of substitutions). A substitution σ is well formed with respect to
a context Γ, written Γ � σ, if for every x : A ∈ Γ and JAK↘ P, we have x[σ] ∈ P. In short, the substitution
maps variables in the context to values in the interpretations of their types.

These judgements can be built up inductively, as demonstrated by the below admissible rules, which are
proven by cases.

Γ � σ admissible semantic substitution well-formedness

S-Nil

Γ � ·
− −

S-Cons
Γ � σ JAK↘ P v ∈ P

Γ, x :A � σ, x 7→ v
−−−−−−−−−−−−−−−−

Then we can define semantic typing in terms of the logical relation, using semantic well formedness of
substitutions to handle the context.

Definition 3 (Semantic typing).
1. v semantically has type A under context Γ, written Γ � v : A, if for every σ such that Γ � σ,

there exists an interpretation JAK↘ P such that v[σ] ∈ P.
2. m semantically has type B under context Γ, written Γ � m : B, if for every σ such that Γ � σ,

there exists an interpretation JBK↘ P such that m[σ] ∈ P.

Semantic typing follows exactly the same shape of rules as syntactic typing, so I present them here as
admissible rules. All the hard work happens in these lemmas; the fundamental theorem of soundness of
syntactic typing with respect to semantic typing then follows directly. Normalization holds as a corollary.

Γ � v : A admissible semantic value typing

S-Var
x : A ∈ Γ

Γ � x : A
−−−−−

S-Unit

Γ � unit : Unit
−−−−−−−−

S-Inl
Γ � v : A1

Γ � inl v : A1 +A2

−−−−−−−−−−

S-Inr
Γ � v : A2

Γ � inr v : A1 +A2

−−−−−−−−−−

S-Thunk
Γ � m : B

Γ � thunkm : U B
−−−−−−−−−−

Γ � m : B admissible semantic computation typing

S-Force
Γ � v : U B

Γ � force v : B
−−−−−−−−

S-Arr
Γ, x :A � m : B

Γ � λx.m : A→ B
−−−−−−−−−−

S-App
Γ � m : A→ B Γ � v : A

Γ � m v : B
−−−−−−−−−−−−−−−−

S-Ret
Γ � v : A

Γ � return v : FA
−−−−−−−−−

S-Let
Γ � m : FA Γ, x :A � n : B

Γ � let x ← m in n : B
−−−−−−−−−−−−−−−−−

S-Case
Γ � v : A1 +A2
Γ, y :A1 � m : B
Γ, z :A2 � n : B

Γ � case v of {inl y ⇒ m ; inr z ⇒ n} : B
−−−−−−−−−−−−−−−−−−−−−−

Proof. By construction using prior lemmas, in particular rule SRs-Let in case S-Let; Interpretability in
cases S-Var, S-Inl, S-Inr, and S-Lam; Determinism in cases S-Lam and S-App; Backward closure in cases
S-Thunk, S-Lam, S-Let, and S-Case; and Adequacy in cases S-Lam, S-Let, and S-Case.

7

Theorem 7 (Soundness).

1. If Γ ` v : A then Γ � v : A.
2. If Γ ` m : B then Γ � m : B.

Proof. By mutual induction on the syntactic typing derivations, using the admissible semantic typing rules.

Corollary 8 (Normalization).

1. If Γ ` v : A then v ∈ SN.
2. If Γ ` m : B then m ∈ SN.

Proof. By Soundness, using the identity substitution and rule S-Nil, the well typed terms inhabit the
semantic interpretations of their types. Then by Adequacy, they are also strongly normalizing.

6 Strong Normalization as an Accessibility Relation
How do we know that our definition of strongly normal terms is correct? What are the properties that define
its correctness? It seems to be insufficient to talk about strongly neutral and normal terms alone.

For instance, we could add another rule asserting that m ∈ SN if m ; m, which doesn’t appear to violate
any of the existing properties we require. Then (λx. (force x) x) (thunk (λx. (force x) x)), which reduces to
itself, would be considered a “strongly normal” term, and typing rules that can type this term (perhaps with
a recursive type) would still be sound with respect to our logical relation.

To try to rule out this kind of mistake in the definition, we might want to prove that strongly normal
terms never loop, i.e. m ∈ SN ∧m ;∗ m is impossible. However, this does not cover diverging terms that
grow forever. Furthermore, m ; n isn’t really a full reduction relation on its own, since it’s defined mutually
with strongly normal terms, and it doesn’t describe reducing anywhere other than in the head position.

The solution we take from POPLMark Reloaded is to prove that SN is sound with respect to a traditional
presentation of strongly normal terms based on full small-step reduction v w , m n of values and
computations. I omit here the definitions of these reductions, but they encompass all β-reduction rules and
are congruent over all subterms, including under binders. Traditional strongly normal terms, written v ∈ sn,
m ∈ sn, are accessibility relations with respect to small-step reduction. Terms are inductively defined as
strongly normal if they step to strongly normal terms, so terms which don’t step are trivially normal. This
rules out looping and diverging terms, since they never stop stepping.

v ∈ sn m ∈ sn strongly normalizing terms

sn-Val
∀w. v w ⇒ w ∈ sn

v ∈ sn

sn-Com
∀n.m n ⇒ n ∈ sn

m ∈ sn

The inversion lemmas we need are easily proven by induction.

sn-App-inv1
m v ∈ sn

m ∈ sn
−−−−−

sn-App-inv2
m v ∈ sn

v ∈ sn
−−−−−

sn-Let-inv1
let x ← m in n ∈ sn

m ∈ sn
−−−−−−−−−−

sn-Let-inv2
let x ← m in n ∈ sn

n ∈ sn
−−−−−−−−−−

Proof. By induction on the premises of strongly normal terms, using congruence of single-step reduction.

In contrast, while congruence rules for SN hold by definition, they require some work to prove for sn.
The strategy is to mirror the inductive characterization, and define corresponding notions of neutral terms
and head reduction, with strongly neutral terms being those both neutral and strongly normal. As before,
variables are the only neutral value, but we write v ∈ ne to say that v is a variable for symmetry.

8

m ;sn n strong head reduction

sr-Thunk

force (thunkm) ;sn m

sr-Lam
v ∈ sn

(λx.m) v ;sn m[x 7→ v]

sr-Ret
v ∈ sn

let x ← (return v) inm ;sn m[x 7→ v]

sr-Inl
v ∈ sn n ∈ sn

case (inl v) of {inl y ⇒ m ; inr z ⇒ n};sn m[y 7→ v]

sr-Inr
v ∈ sn m ∈ sn

case (inr v) of {inl y ⇒ m ; inr z ⇒ n};sn n[z 7→ v]

sr-App
m ;sn n

m v ;sn n v

sr-Let
m ;sn m′

let x ← m in n ;sn let x ← m′ in n

m ∈ ne neutral computations

ne-Force

force x ∈ ne

ne-App
m ∈ ne
m v ∈ ne

ne-Let
m ∈ ne

let x ← m in n ∈ ne

ne-Case

case x of {inl y ⇒ m ; inr z ⇒ n} ∈ ne

Definition 4 (Strongly neutral computations). A strongly neutral computation, written m ∈ sne, is a
computation that is both neutral and strongly normalizing, i.e. m ∈ ne and m ∈ sn.

The admissible congruence rules for sn mirror exactly the congruence constructors for SNe and SN,
replacing these by sne and sn in each premise. Proving them additionally requires showing that small-step
reduction preserves neutrality.

Lemma 9 (Preservation).

1. If v w and v ∈ ne then w ∈ ne.
2. If m n and m ∈ ne then n ∈ ne.

Proof. By mutual induction on the single-step reductions.

v ∈ sn admissible strongly normal values

sn-Var

x ∈ sn
− − −

sn-Unit

unit ∈ sn
−−−−−

sn-Inl
v ∈ sn

inl v ∈ sn
−−−−−

sn-Inr
v ∈ sn

inr v ∈ sn
−−−−−

sn-Thunk
m ∈ sn

thunkm ∈ sn
−−−−−−−

m ∈ sn admissible strongly normal computations

sn-Lam
m ∈ sn

λx.m ∈ sn
−−−−−−

sn-Ret
v ∈ sn

return v ∈ sn
−−−−−−−

sn-Force
v ∈ sn

force v ∈ sn
−−−−−−

sn-App
m ∈ sne v ∈ sn

m v ∈ sn
−−−−−−−−−−

sn-Let
m ∈ sne n ∈ sn

let x ← m in n ∈ sn
−−−−−−−−−−

sn-Case
v ∈ sne m ∈ sn n ∈ sn

case v of {inl y ⇒ m ; inr z ⇒ n} ∈ sn
−−−−−−−−−−−−−−−−−−−−

9

Proof. Rules sn-App, sn-Let, and sn-Case are proven by double induction on the two derivations of
strongly normal terms. Intuitively, we want to show that if the conclusion steps, then it steps to a strongly
normal term, knowing by the induction hypotheses that if their subterms reduce, then they also reduce to
strongly normal terms. Neutrality of the term in head position eliminates cases where the conclusion β-
reduces, leaving only the congruent reductions. Because single-step reduction only steps in one subterm, we
only need the induction hypothesis for that reducing subterm, so the double induction is really a lexicographic
induction on the two derivations. We additionally require Preservation to carry along neutrality when the
heads reduce in cases sn-App and sn-Let. All other cases are direct by construction or by induction on
their sole premise.

The only missing correponding rule is that for rule SN-Red, which backward closes strongly normal
terms under head reduction. Proving this for sn requires much more work and many more intermediate
lemmas. To show backward closure under β-reduction, or head expansion, we first need antisubstitution to
be able to undo substitutions.

Lemma 10 (Antisubstitution (sn)). If m[x 7→ v] ∈ sn and v ∈ sn then m ∈ sn.

Proof. By induction on the derivation of m[x 7→ v] ∈ sn.

m ∈ sn head expansion

sn-Force-Thunk
m ∈ sn

force (thunkm) ∈ sn
−−−−−−−−−−−

sn-App-Lam
v ∈ sn m[x 7→ v] ∈ sn

(λx.m) v ∈ sn
−−−−−−−−−−−−−−

sn-Let-Ret
v ∈ sn m[x 7→ v] ∈ sn

let x ← (return v) inm ∈ sn
−−−−−−−−−−−−−−−

sn-Case-Inl
v ∈ sn

m[y 7→ v] ∈ sn n ∈ sn

case (inl v) of {inl y ⇒ m ; inr z ⇒ n} ∈ sn
−−−−−−−−−−−−−−−−−−−−−−−

sn-Case-Inr
v ∈ sn

m ∈ sn n[z 7→ v] ∈ sn

case (inr v) of {inl y ⇒ m ; inr z ⇒ n} ∈ sn
−−−−−−−−−−−−−−−−−−−−−−−

Proof. Rule sn-Force-Thunk holds directly by induction on the premise; the remaining proofs are more
complex. First, given the premise m[x 7→ v] ∈ sn (or n[z 7→ v]), use Antisubstitution (sn) to obtain m ∈ sn.
Then proceed by double (or triple) induction on the derivations of v ∈ sn and m ∈ sn (and n ∈ sn for the
case rules). Similarly to the admissible strongly normal rules, these are lexicographic inductions, except
m[x 7→ v] ∈ sn (or n[z 7→ v]) is used to satisfy the β-reduction cases.

Now remains backward closure under congruent reduction in head position. Because showing that a
term is strongly normal involves single-step reduction, we need to ensure that head reduction and single-
step reduction commute and behave nicely with each other. Proving commutativity is a lengthy proof that
involves careful analysis of the structure of both reductions.

Lemma 11 (Commutativity). If m n1 and m ;sn n2, then either n1 = n2, or there exists some m′ such
that n1 ;sn m′ and n2 m′.

Proof. By induction on the derivation of m ;sn n2, then by cases on the derivation of m n1.

m ∈ sn backward closure in head position

sn-App-bwd
m ;sn n n v ∈ sn

m v ∈ sn
−−−−−−−−−−−−

sn-Let-bwd
m ;sn m′ let x ← m′ in n ∈ sn

let x ← m in n ∈ sn
−−−−−−−−−−−−−−−−−−−

10

Proof. First, use rules sn-App-inv1, sn-App-inv2, sn-Let-inv1, and sn-Let-inv2 to obtain m ∈ sn and
v ∈ sn/n ∈ sn. Then proceed by double induction on the derivations of m ∈ sn and v ∈ sn/n ∈ sn, again as
lexicographic induction. We want to show that if the conclusion steps, then it steps to a strongly normal
term. Strong reduction of the head position eliminates the cases of β-reduction, leaving the cases where the
head position steps or the other position steps. If the head position steps, we use Commutativity to join the
strong reduction and the single-step reduction together, then use the first induction hypothesis. Otherwise,
we use the second induction hypothesis. We need the last premise to step through either of the subterms,
since we have no congruence rule for when the head position is not neutral.

All of these lemmas at last give us backward closure.

Lemma 12 (Backward closure). If m ;sn n and n ∈ sn then m ∈ sn.

Proof. By induction on the derivation of m ;sn n. The cases correspond exactly to each of rules sn-Force-
Thunk, sn-App-Lam, sn-Let-Ret, sn-Case-Inl, sn-Case-Inr, sn-App-bwd, and sn-Let-bwd.

This gives us all the pieces to show that the inductive characterization is sound with respect to the
traditional presentation of strongly normal terms, using neutral terms and head reduction as intermediate
widgets to strengthen the induction hypotheses, although we can show soundness for neutrality indepen-
dently. With soundness of strongly normal terms combined with soundness of syntactic typing, traditional
strong normalization of well typed terms holds as a corollary.

Lemma 13 (Soundness (SNe)). If m ∈ SNe then m ∈ ne.

Proof. By induction on the derivation of m ∈ SNe.

Theorem 14 (Soundness (SN)).

1. If m ∈ SNe then m ∈ sn.
2. If v ∈ SN then v ∈ sn.
3. If m ∈ SN then m ∈ sn.
4. If m ; n then m ;sn n.

Proof. By mutual induction on the derivations of m ∈ SNe, v ∈ SN, m ∈ SN, and m ; n. The cases for the
first three correspond to the admissible strongly normal rules, using Soundness (SNe) as needed, except for
the SN-Red case, which uses Backward closure. The cases for strong reduction hold by construction.

Corollary 15. If Γ ` v : A then v ∈ sn, and if Γ ` m : B then m ∈ sn.

7 Discussion
7.1 Proof Structure of Strong Normalization
Overall, the inductive characterization of strongly normal terms is convenient to work with. Its congruence
and inversion properties are exactly what are needed to show Backward closure and Adequacy of the logical
relation, which are already built in by its inductive nature. Proving soundness itself relies mostly on the
properties of the logical relation, along with a few more congruence properties of strong head reduction.
Knowing the general recipe for constructing the inductive definition and for the structure of a proof by
logical relations makes it easy to adapt the proof of strong normalization to simply typed CBPV. There are
only a few pitfalls related to simply typed CBPV specifically:

• I originally included a corresponding notion of reduction for values in the mutual inductive which
reduced under subterms. This is unnecessary not only because values have no β-reductions, but
also because subterms of strongly normal values need to be strongly normal anyway, so there is
no need to reduce subterms. Having reduction for values therefore probably characterizes the
same set of strongly normal terms, but made proofs unnecessarily difficult to complete.

11

• Similarly, I originally included premises asserting other subterms of head reduction must be
strongly normal even if they appear in the reduced term on the right-hand side. This changes
what terms may reduce, but not what is included in the set of strongly normal terms, since
rule SN-Red requires that the right-hand term is strongly normal anyway. The soundness proof
still went through, but this design is hard to justify by first principles, and adds proof burden to
the lemmas for the traditional presentation of strongly normal terms later on.

• The lack of a notion of reduction for values creates an asymmetry that initially led me to omit
the fact that the computations in the interpretation of FA in rule LR-F must reduce to strongly
neutral terms instead of merely being strongly neutral. This makes Backward closure impossible
to prove, since strongly neutral terms are not backward closed.

The inductive characterization is easy to work with because all the hard work seems to lie in showing it
sound with respect to the traditional presentation of strongly normal terms. This proof took about as much
time as the entire rest of the development. Not only does it require setting up an entire single-step reduction
relation and proving all of its tedious congruence, renaming, substitution, and commutativity lemmas, the
intermediate lemmas for Soundness (SN) are long and tricky. In particular, the congruence, head expansion,
and backward closure lemmas require double or even triple induction. Rules sn-App-bwd and sn-Let-bwd
are especially tricky, since their double inductions are on two auxiliary derivations produced from one of
the actual premises, and that premise unintuitively needs to stick around over the course of the inductions.
Without guidance from the POPLMark Reloaded paper, I would have been stuck on these two particular
lemmas for much longer.

The purpose of all the work done in Section 6 is to show that sn satisfies properties that otherwise hold
by definition for SN as a constructor. If proving that the latter is sound with respect to the former already
requires all this work showing that the former behaves exactly like the latter, then what is the point of using
the inductive characterization? All constructions of SN could be directly replaced by the congruence and
backward closure lemmas we have proven for sn.

Using the inductive characterization is beneficial only if we don’t care about its soundness with respect to
the traditional presentation, where strong normalization is not the end goal. For example, in the metatheory
of dependent type theory, we care about normalization because we want to know that the type theory is
consistent, and that definitional equality is decidable so that a type checker can actually be implemented.
For the latter purpose, all we require is weak normalization: that there exists some reduction strategy that
reduces terms to normal form. The shape of the inductive characterization makes it easy to show that a
leftmost-outermost reduction strategy does so (LeftmostOutermost.lean). While weak normalization can
be proven directly using the logical relation, generalizing to the inductive strong normalization is actually
easier, in addition to being more modular and not tying the logical relation to the particularities of the
chosen reduction strategy.

7.2 Lean for PL Metatheory
The proof development involved in this report consists of nine files, as mentioned throughout. Table 1 gives
the number of non-blank, non-comment lines of code for each file, which roughly reflects the amount of proof
effort I required. The Syntax.lean file involves a lot of renaming and substitution proofs, but I copied these
from prior proof developments with minimal changes to adapt them to CBPV. The actual semantic proofs
in NormalInd.lean, OpenSemantics.lean, and Soundness.lean took roughly equal amounts of time to
complete. As said in Section 6, the proofs in NormalAcc.lean along with its dependency on Reduction.lean
took nearly as much time to complete as the rest of the semantic proofs, while LeftmostOutermost.lean
mostly mirrors Reduction.lean. The entire project, excluding this report, took about a week to complete.

12

File LOC
Syntax.lean 252
Typing.lean 48
NormalInd.lean 192
OpenSemantics.lean 107
Soundness.lean 114
Normalization.lean 48
Reduction.lean 187
NormalAcc.lean 291
LeftmostOutermost.lean 276

Table 1: Lean development files and lines of code

One of the main technical challenges in mechanizing CBPV in Lean is dealing with mutual induction.
While Lean currently supports mutually defined inductive types, the options for eliminating them are some-
what buggy and restricted. At the lower level, Lean generates independent eliminators (which they call
recursors) for each of the mutual inductives, each with motives for all mutual inductives, similar to what
Scheme Induction for ... with Induction for ... generates in Rocq.

Lean’s induction tactic produces applications of the appropriate recursor, but does not support mutual
inductives. In cases where induction on only a single inductive from the mutual definitions is needed, the
induction tactic can be supplied with a custom recursor, in this case the appropriate inductive’s recursor
with all other motives instantiated to trivial propositions. Unfortunately, this fails because the tactic cannot
handle induction cases with different numbers of indices in the inductive type, even if those other cases are
eventually trivial.

Lean supports structural recursion on mutual inductives, which is implemented via a recursor on an
auxiliary inductive that enables strong induction. However, this feature is currently a little buggy, and fails
on some more complex inductive types.2 Futhermore, writing proofs as recursive functions is unconventional,
and isn’t amenable to even simple automation that can automatically apply induction hypotheses.

Of course, it’s possible to manually apply the recursors that Lean generates for each mutual inductive.
This is inconvenient for several reasons: motives need to be explicitly specified, even when they’re inferrable
from the goals; cases with trivial motives still need to be explicitly proven; and induction cases are duplicated
across the recursors. A partial solution, especially for the last inconvenience, is to generate the same kind of
combined recursor that Combined Scheme ... does for Rocq, but it still requires explicit application. The
mutual induction tactic I had implemented (outside of this project) aims to solve these issues.

In short, my mutual induction tactic targets multiple goals at a time. Applying the tactic on targets
in mutually defined inductives from different goals applies their respective recursors, inferring motives from
those goals, but deduplicates the induction cases, and introduces these cases as new subgoals. If a target
and goal for a particular inductive is missing, the motive for that inductive is set as a trivially inhabited
type, and all cases for that motive are automatically solved.

The mutual induction tactic has worked very well for this project. The mutual inductives involved are
the value and computation terms and types (2 and 2), their typing judgements (2), the logical relation (2),
the small-step reduction relation (2), and the mutually inductive definition of strongly neutral and normal
terms and head reduction (4). The tactic was used for every proof by mutual induction mentioned here.
Additionally, it was used twice for single induction (i.e. all other motives are trivial): rule SN-Force-inv
and Extensionality.

Because the mutual induction tactic is merely a tactic and not a top-level construct, some amount of
manipulation is still required to massage the proof state into one where the tactic can be used. Specifically,
mutual theorems are first stated as some conjunction (∀v, P v) ∧ (∀m,Q m), then split into two separate
goals with targets v,m introduced into the context, before mutual induction is applied to v and m with
inferred motives P and Q. This means that using the theorems individually requires projecting from the
conjunction. There are discussions underway for introducing top-level syntax for mutual theorems, similar

2https://github.com/leanprover/lean4/issues/1672

13

https://github.com/leanprover/lean4/issues/1672

to Rocq’s Theorem ... with ... vernacular, so that multiple goals are introduced automatically with
their hypotheses.3

Aside from mutual induction, the other technical challenge is proving all the renaming and substitution
lemmas. There is no library like Autosubst 2 [3] to automate defining and proving these lemmas. In multiple
places, substitutions need to be massaged into different propositionally equal forms, and this massaging
requires knowing exactly what equality is needed. For PL metatheory that doesn’t involve mutual definitions
but does involve some notion of binding and abstraction, the lack of a library for substitution automation is
perhaps the biggest barrier to Lean being used for PL.

References
[1] A. Abel, G. Allais, A. Hameer, B. Pientka, A. Momigliano, S. Schäfer, and K. Stark. POPLMark

reloaded: Mechanizing proofs by logical relations. Journal of Functional Programming, 29:e19, 2019.
doi:10.1017/S0956796819000170.

[2] Y. Forster, S. Schäfer, S. Spies, and K. Stark. Call-by-push-value in Coq: operational, equational, and
denotational theory. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2019, pages 118–131, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362221. doi:10.1145/3293880.3294097.

[3] K. Stark, S. Schäfer, and J. Kaiser. Autosubst 2: reasoning with multi-sorted de Bruijn terms and vector
substitutions. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2019, pages 166–180, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450362221. doi:10.1145/3293880.3294101.

3https://leanprover.zulipchat.com/#narrow/channel/239415-metaprogramming-.2F-tactics/topic/mutual.
20induction.20tactic/near/504421657

14

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1145/3293880.3294101
https://leanprover.zulipchat.com/#narrow/channel/239415-metaprogramming-.2F-tactics/topic/mutual.20induction.20tactic/near/504421657
https://leanprover.zulipchat.com/#narrow/channel/239415-metaprogramming-.2F-tactics/topic/mutual.20induction.20tactic/near/504421657

	Introduction
	Syntax and Typing
	Strong Normalization as an Inductive Definition
	Logical Relation on Open Terms
	Semantic Typing and the Fundamental Theorem
	Strong Normalization as an Accessibility Relation
	Discussion
	Proof Structure of Strong Normalization
	Lean for PL Metatheory

