Spacing and formatting adjustments
This commit is contained in:
parent
4cdd0c233a
commit
481e81d408
26
cbpv.mng
26
cbpv.mng
|
@ -40,6 +40,7 @@
|
|||
\inputott{rules}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\section{Introduction}
|
||||
|
@ -144,6 +145,8 @@ which expands the set from normal forms
|
|||
to terms which must reduce to normal forms.
|
||||
|
||||
The general recipe for defining these for CBPV is as follows:
|
||||
|
||||
\clearpage
|
||||
\begin{itemize}[rightmargin=\leftmargin]
|
||||
\item The only strongly neutral values are variables.
|
||||
\item Strongly neutral computations are eliminators
|
||||
|
@ -417,9 +420,10 @@ semantically well formed with respect to a context.
|
|||
These judgements can be built up inductively,
|
||||
as demonstrated by the below admissible rules.
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[S]{$[[G ⊧ s]]$}{admissible semantic substitution well-formedness}{Nil,Cons}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
Then we can define semantic typing in terms of the logical relation,
|
||||
using semantic well formedness of substitutions to handle the context.
|
||||
|
@ -442,10 +446,11 @@ the fundamental theorem of soundness of syntactic typing with respect to semanti
|
|||
then follows directly.
|
||||
Normalization holds as a corollary.
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[S]{$[[G ⊧ v : A]]$}{admissible semantic value typing}{Var,Unit,Inl,Inr,Thunk}
|
||||
\drules[S]{$[[G ⊧ m : B]]$}{admissible semantic computation typing}{Force,Lam,App,Ret,Let,Case}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
By construction using prior lemmas,
|
||||
|
@ -573,10 +578,11 @@ Proving them additionally requires showing that small-step reduction preserves n
|
|||
By mutual induction on the single-step reductions.
|
||||
\end{proof}
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[sn]{$[[v ∈ sn]]$}{admissible strongly normal values}{Var,Unit,Inl,Inr,Thunk}
|
||||
\drules[sn]{$[[m ∈ sn]]$}{admissible strongly normal computations}{Lam,Ret,Force,App,Let,Case}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
\Rref{sn-App,sn-Let,sn-Case} are proven by double induction
|
||||
|
@ -610,9 +616,10 @@ we first need antisubstitution to be able to undo substitutions.
|
|||
By induction on the derivation of $[[m{x ↦ v} ∈ sn]]$.
|
||||
\end{proof}
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[sn]{$[[m ∈ sn]]$}{head expansion}{Force-Thunk,App-Lam,Let-Ret,Case-Inl,Case-Inr}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
\Rref{sn-Force-Thunk} holds directly by induction on the premise;
|
||||
|
@ -645,12 +652,15 @@ of the structure of both reductions.
|
|||
then by cases on the derivation of $[[m ⇝ n1]]$.
|
||||
\end{proof}
|
||||
|
||||
\begingroup
|
||||
\setlength{\abovedisplayskip}{0pt}
|
||||
\begin{mathpar}
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\fbox{$[[m ∈ sn]]$} \hfill \textit{backward closure in head position} \\
|
||||
\drule[width=0.45\textwidth]{sn-App-bwd}
|
||||
\drule[width=0.55\textwidth]{sn-Let-bwd}
|
||||
\end{mathpar}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
First, use \rref{sn-App-inv1,sn-App-inv2,sn-Let-inv1,sn-Let-inv2}
|
||||
|
|
26
cbpv.tex
26
cbpv.tex
|
@ -40,6 +40,7 @@
|
|||
\inputott{rules}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\section{Introduction}
|
||||
|
@ -144,6 +145,8 @@ which expands the set from normal forms
|
|||
to terms which must reduce to normal forms.
|
||||
|
||||
The general recipe for defining these for CBPV is as follows:
|
||||
|
||||
\clearpage
|
||||
\begin{itemize}[rightmargin=\leftmargin]
|
||||
\item The only strongly neutral values are variables.
|
||||
\item Strongly neutral computations are eliminators
|
||||
|
@ -417,9 +420,10 @@ semantically well formed with respect to a context.
|
|||
These judgements can be built up inductively,
|
||||
as demonstrated by the below admissible rules.
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[S]{$ \Gamma \vDash \sigma $}{admissible semantic substitution well-formedness}{Nil,Cons}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
Then we can define semantic typing in terms of the logical relation,
|
||||
using semantic well formedness of substitutions to handle the context.
|
||||
|
@ -442,10 +446,11 @@ the fundamental theorem of soundness of syntactic typing with respect to semanti
|
|||
then follows directly.
|
||||
Normalization holds as a corollary.
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[S]{$ \Gamma \vDash \ottnt{v} : \ottnt{A} $}{admissible semantic value typing}{Var,Unit,Inl,Inr,Thunk}
|
||||
\drules[S]{$ \Gamma \vDash \ottnt{m} : \ottnt{B} $}{admissible semantic computation typing}{Force,Lam,App,Ret,Let,Case}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
By construction using prior lemmas,
|
||||
|
@ -573,10 +578,11 @@ Proving them additionally requires showing that small-step reduction preserves n
|
|||
By mutual induction on the single-step reductions.
|
||||
\end{proof}
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[sn]{$ \ottnt{v} \in \kw{sn} $}{admissible strongly normal values}{Var,Unit,Inl,Inr,Thunk}
|
||||
\drules[sn]{$ \ottnt{m} \in \kw{sn} $}{admissible strongly normal computations}{Lam,Ret,Force,App,Let,Case}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
\Rref{sn-App,sn-Let,sn-Case} are proven by double induction
|
||||
|
@ -610,9 +616,10 @@ we first need antisubstitution to be able to undo substitutions.
|
|||
By induction on the derivation of $ \ottnt{m} [ \ottmv{x} \mapsto \ottnt{v} ] \in \kw{sn} $.
|
||||
\end{proof}
|
||||
|
||||
{\mprset{fraction={-~}{-~}{-}}
|
||||
\begingroup
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\drules[sn]{$ \ottnt{m} \in \kw{sn} $}{head expansion}{Force-Thunk,App-Lam,Let-Ret,Case-Inl,Case-Inr}
|
||||
}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
\Rref{sn-Force-Thunk} holds directly by induction on the premise;
|
||||
|
@ -645,12 +652,15 @@ of the structure of both reductions.
|
|||
then by cases on the derivation of $ \ottnt{m} \rightsquigarrow \ottnt{n_{{\mathrm{1}}}} $.
|
||||
\end{proof}
|
||||
|
||||
\begingroup
|
||||
\setlength{\abovedisplayskip}{0pt}
|
||||
\begin{mathpar}
|
||||
\mprset{fraction={-~}{-~}{-}}
|
||||
\fbox{$ \ottnt{m} \in \kw{sn} $} \hfill \textit{backward closure in head position} \\
|
||||
\drule[width=0.45\textwidth]{sn-App-bwd}
|
||||
\drule[width=0.55\textwidth]{sn-Let-bwd}
|
||||
\end{mathpar}
|
||||
\endgroup
|
||||
|
||||
\begin{proof}
|
||||
First, use \rref{sn-App-inv1,sn-App-inv2,sn-Let-inv1,sn-Let-inv2}
|
||||
|
|
Loading…
Reference in New Issue