Spacing and formatting adjustments

This commit is contained in:
Jonathan Chan 2025-04-22 14:13:06 -04:00
parent 4cdd0c233a
commit 481e81d408
3 changed files with 38 additions and 18 deletions

View File

@ -40,6 +40,7 @@
\inputott{rules} \inputott{rules}
\begin{document} \begin{document}
\maketitle \maketitle
\section{Introduction} \section{Introduction}
@ -144,6 +145,8 @@ which expands the set from normal forms
to terms which must reduce to normal forms. to terms which must reduce to normal forms.
The general recipe for defining these for CBPV is as follows: The general recipe for defining these for CBPV is as follows:
\clearpage
\begin{itemize}[rightmargin=\leftmargin] \begin{itemize}[rightmargin=\leftmargin]
\item The only strongly neutral values are variables. \item The only strongly neutral values are variables.
\item Strongly neutral computations are eliminators \item Strongly neutral computations are eliminators
@ -417,9 +420,10 @@ semantically well formed with respect to a context.
These judgements can be built up inductively, These judgements can be built up inductively,
as demonstrated by the below admissible rules. as demonstrated by the below admissible rules.
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[S]{$[[G ⊧ s]]$}{admissible semantic substitution well-formedness}{Nil,Cons} \drules[S]{$[[G ⊧ s]]$}{admissible semantic substitution well-formedness}{Nil,Cons}
} \endgroup
Then we can define semantic typing in terms of the logical relation, Then we can define semantic typing in terms of the logical relation,
using semantic well formedness of substitutions to handle the context. using semantic well formedness of substitutions to handle the context.
@ -442,10 +446,11 @@ the fundamental theorem of soundness of syntactic typing with respect to semanti
then follows directly. then follows directly.
Normalization holds as a corollary. Normalization holds as a corollary.
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[S]{$[[G ⊧ v : A]]$}{admissible semantic value typing}{Var,Unit,Inl,Inr,Thunk} \drules[S]{$[[G ⊧ v : A]]$}{admissible semantic value typing}{Var,Unit,Inl,Inr,Thunk}
\drules[S]{$[[G ⊧ m : B]]$}{admissible semantic computation typing}{Force,Lam,App,Ret,Let,Case} \drules[S]{$[[G ⊧ m : B]]$}{admissible semantic computation typing}{Force,Lam,App,Ret,Let,Case}
} \endgroup
\begin{proof} \begin{proof}
By construction using prior lemmas, By construction using prior lemmas,
@ -573,10 +578,11 @@ Proving them additionally requires showing that small-step reduction preserves n
By mutual induction on the single-step reductions. By mutual induction on the single-step reductions.
\end{proof} \end{proof}
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[sn]{$[[v ∈ sn]]$}{admissible strongly normal values}{Var,Unit,Inl,Inr,Thunk} \drules[sn]{$[[v ∈ sn]]$}{admissible strongly normal values}{Var,Unit,Inl,Inr,Thunk}
\drules[sn]{$[[m ∈ sn]]$}{admissible strongly normal computations}{Lam,Ret,Force,App,Let,Case} \drules[sn]{$[[m ∈ sn]]$}{admissible strongly normal computations}{Lam,Ret,Force,App,Let,Case}
} \endgroup
\begin{proof} \begin{proof}
\Rref{sn-App,sn-Let,sn-Case} are proven by double induction \Rref{sn-App,sn-Let,sn-Case} are proven by double induction
@ -610,9 +616,10 @@ we first need antisubstitution to be able to undo substitutions.
By induction on the derivation of $[[m{x ↦ v} ∈ sn]]$. By induction on the derivation of $[[m{x ↦ v} ∈ sn]]$.
\end{proof} \end{proof}
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[sn]{$[[m ∈ sn]]$}{head expansion}{Force-Thunk,App-Lam,Let-Ret,Case-Inl,Case-Inr} \drules[sn]{$[[m ∈ sn]]$}{head expansion}{Force-Thunk,App-Lam,Let-Ret,Case-Inl,Case-Inr}
} \endgroup
\begin{proof} \begin{proof}
\Rref{sn-Force-Thunk} holds directly by induction on the premise; \Rref{sn-Force-Thunk} holds directly by induction on the premise;
@ -645,12 +652,15 @@ of the structure of both reductions.
then by cases on the derivation of $[[m ⇝ n1]]$. then by cases on the derivation of $[[m ⇝ n1]]$.
\end{proof} \end{proof}
\begingroup
\setlength{\abovedisplayskip}{0pt}
\begin{mathpar} \begin{mathpar}
\mprset{fraction={-~}{-~}{-}} \mprset{fraction={-~}{-~}{-}}
\fbox{$[[m ∈ sn]]$} \hfill \textit{backward closure in head position} \\ \fbox{$[[m ∈ sn]]$} \hfill \textit{backward closure in head position} \\
\drule[width=0.45\textwidth]{sn-App-bwd} \drule[width=0.45\textwidth]{sn-App-bwd}
\drule[width=0.55\textwidth]{sn-Let-bwd} \drule[width=0.55\textwidth]{sn-Let-bwd}
\end{mathpar} \end{mathpar}
\endgroup
\begin{proof} \begin{proof}
First, use \rref{sn-App-inv1,sn-App-inv2,sn-Let-inv1,sn-Let-inv2} First, use \rref{sn-App-inv1,sn-App-inv2,sn-Let-inv1,sn-Let-inv2}

BIN
cbpv.pdf (Stored with Git LFS)

Binary file not shown.

View File

@ -40,6 +40,7 @@
\inputott{rules} \inputott{rules}
\begin{document} \begin{document}
\maketitle \maketitle
\section{Introduction} \section{Introduction}
@ -144,6 +145,8 @@ which expands the set from normal forms
to terms which must reduce to normal forms. to terms which must reduce to normal forms.
The general recipe for defining these for CBPV is as follows: The general recipe for defining these for CBPV is as follows:
\clearpage
\begin{itemize}[rightmargin=\leftmargin] \begin{itemize}[rightmargin=\leftmargin]
\item The only strongly neutral values are variables. \item The only strongly neutral values are variables.
\item Strongly neutral computations are eliminators \item Strongly neutral computations are eliminators
@ -417,9 +420,10 @@ semantically well formed with respect to a context.
These judgements can be built up inductively, These judgements can be built up inductively,
as demonstrated by the below admissible rules. as demonstrated by the below admissible rules.
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[S]{$ \Gamma \vDash \sigma $}{admissible semantic substitution well-formedness}{Nil,Cons} \drules[S]{$ \Gamma \vDash \sigma $}{admissible semantic substitution well-formedness}{Nil,Cons}
} \endgroup
Then we can define semantic typing in terms of the logical relation, Then we can define semantic typing in terms of the logical relation,
using semantic well formedness of substitutions to handle the context. using semantic well formedness of substitutions to handle the context.
@ -442,10 +446,11 @@ the fundamental theorem of soundness of syntactic typing with respect to semanti
then follows directly. then follows directly.
Normalization holds as a corollary. Normalization holds as a corollary.
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[S]{$ \Gamma \vDash \ottnt{v} : \ottnt{A} $}{admissible semantic value typing}{Var,Unit,Inl,Inr,Thunk} \drules[S]{$ \Gamma \vDash \ottnt{v} : \ottnt{A} $}{admissible semantic value typing}{Var,Unit,Inl,Inr,Thunk}
\drules[S]{$ \Gamma \vDash \ottnt{m} : \ottnt{B} $}{admissible semantic computation typing}{Force,Lam,App,Ret,Let,Case} \drules[S]{$ \Gamma \vDash \ottnt{m} : \ottnt{B} $}{admissible semantic computation typing}{Force,Lam,App,Ret,Let,Case}
} \endgroup
\begin{proof} \begin{proof}
By construction using prior lemmas, By construction using prior lemmas,
@ -573,10 +578,11 @@ Proving them additionally requires showing that small-step reduction preserves n
By mutual induction on the single-step reductions. By mutual induction on the single-step reductions.
\end{proof} \end{proof}
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[sn]{$ \ottnt{v} \in \kw{sn} $}{admissible strongly normal values}{Var,Unit,Inl,Inr,Thunk} \drules[sn]{$ \ottnt{v} \in \kw{sn} $}{admissible strongly normal values}{Var,Unit,Inl,Inr,Thunk}
\drules[sn]{$ \ottnt{m} \in \kw{sn} $}{admissible strongly normal computations}{Lam,Ret,Force,App,Let,Case} \drules[sn]{$ \ottnt{m} \in \kw{sn} $}{admissible strongly normal computations}{Lam,Ret,Force,App,Let,Case}
} \endgroup
\begin{proof} \begin{proof}
\Rref{sn-App,sn-Let,sn-Case} are proven by double induction \Rref{sn-App,sn-Let,sn-Case} are proven by double induction
@ -610,9 +616,10 @@ we first need antisubstitution to be able to undo substitutions.
By induction on the derivation of $ \ottnt{m} [ \ottmv{x} \mapsto \ottnt{v} ] \in \kw{sn} $. By induction on the derivation of $ \ottnt{m} [ \ottmv{x} \mapsto \ottnt{v} ] \in \kw{sn} $.
\end{proof} \end{proof}
{\mprset{fraction={-~}{-~}{-}} \begingroup
\mprset{fraction={-~}{-~}{-}}
\drules[sn]{$ \ottnt{m} \in \kw{sn} $}{head expansion}{Force-Thunk,App-Lam,Let-Ret,Case-Inl,Case-Inr} \drules[sn]{$ \ottnt{m} \in \kw{sn} $}{head expansion}{Force-Thunk,App-Lam,Let-Ret,Case-Inl,Case-Inr}
} \endgroup
\begin{proof} \begin{proof}
\Rref{sn-Force-Thunk} holds directly by induction on the premise; \Rref{sn-Force-Thunk} holds directly by induction on the premise;
@ -645,12 +652,15 @@ of the structure of both reductions.
then by cases on the derivation of $ \ottnt{m} \rightsquigarrow \ottnt{n_{{\mathrm{1}}}} $. then by cases on the derivation of $ \ottnt{m} \rightsquigarrow \ottnt{n_{{\mathrm{1}}}} $.
\end{proof} \end{proof}
\begingroup
\setlength{\abovedisplayskip}{0pt}
\begin{mathpar} \begin{mathpar}
\mprset{fraction={-~}{-~}{-}} \mprset{fraction={-~}{-~}{-}}
\fbox{$ \ottnt{m} \in \kw{sn} $} \hfill \textit{backward closure in head position} \\ \fbox{$ \ottnt{m} \in \kw{sn} $} \hfill \textit{backward closure in head position} \\
\drule[width=0.45\textwidth]{sn-App-bwd} \drule[width=0.45\textwidth]{sn-App-bwd}
\drule[width=0.55\textwidth]{sn-Let-bwd} \drule[width=0.55\textwidth]{sn-Let-bwd}
\end{mathpar} \end{mathpar}
\endgroup
\begin{proof} \begin{proof}
First, use \rref{sn-App-inv1,sn-App-inv2,sn-Let-inv1,sn-Let-inv2} First, use \rref{sn-App-inv1,sn-App-inv2,sn-Let-inv1,sn-Let-inv2}