
PHYS 319

Labs 1 and 2 Notes

Jonathan Chan (15354146)

January 18, 2018

1 Lab 1

The goal of this lab is to display the last four digits of my student number (4146) on the 4-digit
7-segment display.

The breadboard’s wiring layout resembles this (there are two):

------------------ -------------------

------------------ -------------------

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

------------------ -------------------

------------------ -------------------

In VOH , VIH , VOL, VIL,

• The O/I means it’s the voltage output/input

• The H/L means it’s a voltage HI/LO (or 1/0)

Max and min are the maximum and minimum acceptable voltage for that input/output for HI/LO.
For example, a gate’s acceptable voltages may look like the following:

+5V

||| max

||| V_IH

||| min

|

|

|

||| max

||| V_IL

||| min

=0V

1

The 4-digit 7-segment multiplexed display has seven inputs:

• D3 D2 D1 D0: the input for a single digit, from 0x0 to 0xF

• A1 A0: the input for selecting a digit, where 0b11 is leftmost and 0b00 is rightmost

• STR: when this voltage goes from LO to HI, the value given by Dx is loaded into the digit
selected by Ax

Normally, since a single 7-segment display requires four inputs to display the 24 = 16 different hex
digits, 16 inputs would be required to display four digits. However, by using two inputs to select
one of the 22 = 4 digits to change and one input to indicate when the digit should be updated, we
reduce the total number of inputs to just seven. The width of the latch switch pulse is 30 ns and
there is a propagation delay from input to output of 50 ns.

Below is a rough circuit diagramme for wiring up the switches to the Dx inputs, the button to
the strobe, and Ax:

Ohmm...

+5V ____VVV___

| __ | __ | __ | __ |

|_____| | |_____| | |_____| | |_____| | | set manually

______|SW| ______|SW| ______|SW| ______|SW| |__ w/ 5V|GND to

| GRD_|__| | GRD_|__| | GRD_|__| | GRD_|__| | O| select digit

| | | | |__| | |

| | | | | | |

D3 D2 D1 D0 STR A1 A0

| __ __ __ __ |

| |__| |__| |__| |__| |

| |__| |__| |__| |__| |

|___|

11 10 01 00 == A1 A0

SW indicates a switch, where the up position corresponds to HI and the down position to LO. The O

encased in a rectangle connected to the strobe input is the button used to strobe from low to high
to allow the display to accept the current inputs. To set the second-left digit to 6, for example, the
switches must be in positions [down up up down] and A1 must be connected to power while A0
remains connected to ground. Then press the strobe button and the digit will appear.

2

2 Lab 2

Some minor reminders:

• Remember to connect +5V and ground to 4-digit 7-segment display, and ground (but not
VCC) to microprocessor

• mspdebug needs to be exited (with CTRL-D) for the program to run

2.1 Student Number

The goal of this activity is to display the last four digits of my student number (4146) using the
microprocessor. The pins P1.7 to P1.0 excluding P1.3 have been connected to D3 through D0, then
A1 and A0, then STR. Therefore, there needs to be a move to P1OUT for setting each digit. Since
the strobe also needs to go from low to high to actually set the digit, there are actually two moves
for each digit to alternate the strobe. Below is the full program for setting the display to 4146.

.include "msp430g2553.inc"

org 0xc000

START:

; setup

mov #0x0400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR

; set digits

mov.b #01100000b, &P1OUT ; xxx6

mov.b #01100001b, &P1OUT ; xxx6

mov.b #01000010b, &P1OUT ; xx46

mov.b #01000011b, &P1OUT ; xx46

mov.b #00010100b, &P1OUT ; x146

mov.b #00010101b, &P1OUT ; x146

mov.b #01000110b, &P1OUT ; 4146

mov.b #01000111b, &P1OUT ; 4146

; disable

bis.w #CPUOFF, SR

org 0xfffe

dw START

3

2.2 Program 1

The goal of this activity is to understand the given program in assembly and to modify the blink-
ing speed. The key features to note is that xor 0100 0001 is used to alternate the lights from
0100 0000 -> 0000 0001, and that the pauses between blinks is achieved by decrementing a reg-
ister set to some value and waiting until that value becomes zero. Below is the full program for
half-speed blinking annotated with comments. Making the lights blink twice as fast is simply halv-
ing the initial value set in R9, but making them blink twice as slow involves decrementing another
register, since the doubled value is 80000 and will not fit in a two-byte word whose maximum value
is 65536.

.include "msp430g2553.inc"

org 0xC000

START:

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #0x41, &P1DIR ; #01000001b (P1.6 == LED2, P1.0 == LED1)

mov.w #0x01, R8 ; #00000001b (start on LED1)

REPEAT:

mov.b R8, &P1OUT

xor.b #0x41, R8 ; #00000001b -> #01000000b -> ... (LED1 -> LED2 -> ...)

mov.w #40000, R9 ; counts to decrement before blink

mov.w #40000, R10 ; counts to decrement (2nd dec, since max val is 65536)

WAITER1:

dec R9

jnz WAITER1 ; R9 not yet 0

WAITER2:

dec R10

jnz WAITER2 ; R10 not yet 0

jmp REPEAT ; R9, R10 == 0; blink other LED

org 0xfffe

dw START ; reset interrupt goes to START

2.3 Program 2

The goal of this activity is to understand the given program in assembly and to modify the behaviour
from turning the LEDs on and off to turning alternating LEDs on, then both, then off. To make
the LEDs cycle in the order

none -> red -> green -> both -> none,

the output to P1OUT needs to cycle through

0000 0000 -> 0000 0001 -> 0100 0000 -> 0100 0001 -> 0000 0000.

4

Notice that the first and third transitions

0000 0000 -> 0000 0001 and 0100 0000 -> 0100 0001

can be done by applying xor 0000 0001, while the second and fourth transitions

0000 0001 -> 0100 0000 and 0100 0001 -> 0000 0000

can be done by applying xor 0100 0001. Rather than using two registers to save these two
constants, notice that in turn the transitions

0000 0001 -> 0100 0001 -> 0000 0001

can be done by applying xor 0100 0000. Therefore we initialize a register, chosen here to be R8,
to 0100 0001 (since the LEDs begin in the both-on state), and after we have applied xor R8 on
the output to obtain the next output, 0000 0000, we apply xor 0100 0000 on R8 to get the next
value of R8, 0000 0001, that should be xored with the next output, and so forth. Below is the full
program annotated with comments. Note that although registers are a word long, we only need
the last byte, so all of the mov, xor operations can be for just the byte.

.include "msp430g2553.inc"

org 0x0C000

RESET:

mov.w #0x400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR ; all pins outputs except P1.3

mov.b #00001000b, &P1REN ; enable resistor pull for P1.3

mov.b #00001000b, &P1IE ; P1.3 set as an interrupt

mov.b #00001000b, R7 ; set LEDs off and P1.3 pullup

mov.b R7, &P1OUT ; LED1, LED2 on

mov.b #00000001b, R8 ; initial value to xor with R7

EINT ; enable interrupts

bis.w #CPUOFF, SR

PUSH:

xor.b R8, R7 ; next LED state

xor.b #01000000b, R8 ; 0x0041 -> 0x0001 -> 0x0041

mov.b R7, &P1OUT ; set LEDs to new state

bic.b #00001000b, &P1IFG ; interrupt flag P1.3 set to 0

reti ; return from interrupt

org 0xffe4

dw PUSH ; interrupt from button goes here

org 0xfffe

dw RESET ; interrupt from reset button goes here

5

A problem I was encountering was that my P1.3 button seemed to be unpredictably sending multiple
signals sometimes, which gave me difficulty in checking if the LED changing behaviour I had
programmed was doing what I expected it to do. Therefore, I wrote a loop at the end of PUSH

to keep on executing the LED changes (with a delay), so that I wouldn’t have to press the faulty
button to change the lights. Below is the full program for this modification.

.include "msp430g2553.inc"

org 0x0C000

RESET:

mov.w #0x400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR ; all pins outputs except P1.3

mov.b #00001000b, &P1REN ; enable resistor pull for P1.3

mov.b #00001000b, &P1IE ; P1.3 set as an interrupt

mov.b #00001000b, R7 ; set LEDs off and P1.3 pullup

mov.b R7, &P1OUT ; LED1, LED2 on

mov.b #00000001b, R8 ; initial value to xor with R7

EINT ; enable interrupts

bis.w #CPUOFF, SR

PUSH:

xor.b R8, R7 ; next LED state

xor.b #01000000b, R8 ; 0x0041 -> 0x0001 -> 0x0041

mov.b R7, &P1OUT ; set LEDs to new state

mov.w #0xFFFF, R9 ; decrementing delay in R9

LOOP:

dec R9

nop ; the more nops, the longer the delay

nop

nop

nop

jnz LOOP

jmp PUSH

org 0xffe4

dw PUSH ; interrupt from button goes here

org 0xfffe

dw RESET ; interrupt from reset button goes here

6

