
PHYS 319

Labs 5 and 6 Notes

Jonathan Chan (15354146)

February 20, 2018

The goal of this lab is to measure distances with the ultrasonic ranger. References to specific values
and other documentation notes refer to http://www.robot-electronics.co.uk/htm/srf04tech.htm. The
steps to achieve this can be outlined as follows:

1. Send a trigger pulse to the ranger. According to the documentation, this pulse needs to be 10µs long.

2. Wait for the echo input to be raised. This can be done by setting a low-to-high interrupt on the echo
pin.

3. Time the length of the echo pulse sent by the ranger. We will set TAR to 0 and retrieve the value of
TAR when the echo pin is lowered, which can be done by setting a high-to-low interrupt on the echo
pin. We will use the SMCLK timer, which runs at 1 MHz, meaning that the maximum length that can
be measured without overflowing is 65 535 µs. However, according to the documentation, the ranger
will time out and lower the echo pin after 30 000 µs, so we aren’t in danger of overflowing.

4. Convert the measurement to distance in centimetres. According to the documentation, we need to
divide by 58. Since we’re limited to sending one byte at a time, we can also set the value to 0 if the
distance exceeds 255 cm to prevent the plot from graphing meaningless overflowed values.

5. Send the data to the Python plot. This portion of the code will come from the provided temperature
measurement program.

6. Repeat the measurement. According to the documentation, we need to wait 10 ms to allow the ranger
to recharge. I’ve set the delay to 100 ms to smooth out the data and prevent rapid changes in the
position of the ranger from being recorded.

With some measurements using a metre stick, the distances measured by the ranger are indeed accurate to the
centimetre. It also appears that it cannot measure anything closer than 3 cm. Of course, we are also upper-
bounded at 255 cm by the size of one byte, even if the limit of the ranger itself is 30 000µs/58 µs ∗ cm−1 ≈
517 cm. We can circumvent this by dividing the the value by 2 in the C program then multiplying it by 2
again in the Python program, so that the maximum measurable distance is 510 cm, at the cost of decreasing
the precision to a granularity of 2 cm.

Below is the modified main.c file, with the remaining files unchanged from http://www.phas.ubc.ca/

~michal/phys319/temperature_demo4.zip. Of course, the axis ranges and labels of the plot should be
adjusted accordingly. After the C program has been written to the microprocessor, connect P1.4 to the
ranger’s trigger pin, connect P1.6 to the ranger’s echo pin through a 1 kΩ resistor, connect the ranger to 5 V
and ground, connect the microprocessor to ground, and run python python-serial-plot.py.

1

http://www.robot-electronics.co.uk/htm/srf04tech.htm
http://www.phas.ubc.ca/~michal/phys319/temperature_demo4.zip
http://www.phas.ubc.ca/~michal/phys319/temperature_demo4.zip


main.c :

#include "msp430.h"

#define TXD BIT2

#define RXD BIT1

#define TRIG BIT4

#define ECHO BIT6

#define CM 58

unsigned int TXByte;

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

BCSCTL1 = CALBC1_1MHZ; // Set range

DCOCTL = CALDCO_1MHZ;

BCSCTL2 &= ~(DIVS_3); // SMCLK = DCO = 1 MHz

P1SEL = BIT1 + BIT2; // P1.1 = RXD, P1.2=TXD

P1SEL2 = BIT1 + BIT2; // P1.1 = RXD, P1.2=TXD

UCA0CTL1 |= UCSSEL_2; // Use SMCLK

UCA0BR0 = 104; // Set baud rate to 9600 with 1MHz clock (Data Sheet 15.3.13)

UCA0BR1 = 0; // Set baud rate to 9600 with 1MHz clock

UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1

UCA0CTL1 &= ~UCSWRST; // Initialize USCI state machine

P1DIR |= TXD;

P1OUT |= TXD;

P1DIR |= TRIG; // set trigger output

P1DIR &= ~ECHO; // set echo input

P1IE |= ECHO; // use echo input as interrupt

TACTL = TACLR; // reset clock

TACTL = TASSEL_2 | MC_2; // set SMCLK timer to count up at 1 MHz

__enable_interrupt();

while (1) {

P1OUT |= TRIG; // start trigger signal

__delay_cycles(10); // we need a >10 us pulse and one clock cycle is 1 us

P1OUT &= ~TRIG; // end trigger signal

P1IES &= ~ECHO; // interrupt on low to high

__bis_SR_register(LPM0_bits + GIE);

TAR = 0;

P1IES |= ECHO; // interrupt on high to low

__bis_SR_register(LPM0_bits + GIE);

TXByte = TAR / CM; // distance in cm

TXByte = (TXByte <= 0xFF) * TXByte; // set to 0 if beyond range

while (!(IFG2 & UCA0TXIFG)); // wait for TX buffer to be ready for new data

UCA0TXBUF = TXByte;

__delay_cycles(100000); // wait >10 ms before measuring again

}

}

2



// handle P1.3 interrupts

#if defined(__TI_COMPILER_VERSION__)

#pragma vector=PORT1_VECTOR

__interrupt void port1_isr(void)

#else

void __attribute__ ((interrupt(PORT1_VECTOR))) port1_isr (void)

#endif

{

P1IFG = 0; // reset interrupt flag

__bic_SR_register_on_exit(LPM0_bits); // take us out of low power mode

}

serial-python-plot.py :

...

ax = fig.add_subplot(111,xlabel='Time Step',ylabel='Distance (cm)')

ax.set_ylim(0,255) # set limits of y axis.

...

The above chart shows the deviation from the actual distance as measured with the ultrasonic ranger by
pointing it at a perpendicular wall certain distances away. The measurements for distances under 3 cm are all
exactly 3 cm, which explains the linearly decreasing distances in the lower end; as mentioned previously, the
ranger cannot measure distances any closer. As distance increases, the measurement becomes less accurate:
this may be because the father the pulse has to travel, the more spread out it becomes, and it bounces off
parts of the wall not exactly perpendicular but slightly off centre. This explanation is further supported
by the fact that when using a portable smaller surface in lieu of a wall, as I had originally done, at certain
distances the surface wasn’t large enough to yield a meaningful result.

3


