
PHYS 319

Labs 1 and 2 Notes

Jonathan Chan (15354146)

January 16, 2018

1 Lab 1

The breadboard’s wiring layout resembles this (there are two):

------------------ -------------------

------------------ -------------------

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | |

------------------ -------------------

------------------ -------------------

In VOH , VIH , VOL, VIL,

• The O/I means it’s the voltage output/input

• The H/L means it’s a voltage HI/LO (or 1/0)

Max and min are the maximum and minimum acceptable voltage for that input/output for HI/LO.
For example, a gate’s acceptable voltages may look like the following:

1

+5V

||| max

|||

||| V_IH

|||

||| min

|

|

|

|

|

||| max

||| V_IL

||| min

=0V

The 4-digit 7-segment multiplexed display has seven inputs:

• D3 D2 D1 D0: the input for a single digit, from 0x0 to 0xF

• A1 A0: the input for selecting a digit, where 0b11 is leftmost and 0b00 is rightmost

• STR: when this voltage goes from LO to HI, the value given by Dx is loaded into the digit
selected by Ax

Below is a rough circuit diagramme for wiring up the switches to the Dx inputs, the button to the
strobe, and Ax:

Ohmm...

+5V ____VVV___

| __ | __ | __ | __ |

|_____| | |_____| | |_____| | |_____| | | set manually

______|SW| ______|SW| ______|SW| ______|SW| |__ w/ 5V|GND to

| GRD_|__| | GRD_|__| | GRD_|__| | GRD_|__| | O| select digit

| | | | |__| | |

| | | | | | |

D3 D2 D1 D0 STR A1 A0

| __ __ __ __ |

| |__| |__| |__| |__| |

| |__| |__| |__| |__| |

|___|

11 10 01 00 == A1 A0

2

2 Lab 2

Some minor reminders:

• Remember to connect +5V and ground to 4-digit 7-segment display, and ground (but not
VCC) to microprocessor

• mspdebug needs to be exited (with CTRL-D) for the program to run

2.1 Student Number

There needs to be a move to P1OUT for setting each digit. Since the strobe also needs to go from
low to high to actually set the digit, there are actually two moves for each digit. Below is the full
program for setting the display to 4146.

.include "msp430g2553.inc"

org 0xc000

START:

; setup

mov #0x0400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR

; set digits

mov.b #01100000b, &P1OUT ; xxx6

mov.b #01100001b, &P1OUT ; xxx6

mov.b #01000010b, &P1OUT ; xx46

mov.b #01000011b, &P1OUT ; xx46

mov.b #00010100b, &P1OUT ; x146

mov.b #00010101b, &P1OUT ; x146

mov.b #01000110b, &P1OUT ; 4146

mov.b #01000111b, &P1OUT ; 4146

; disable

bis.w #CPUOFF, SR

org 0xfffe

dw START

3

2.2 Program 1

Below is the full program for half-speed blinking annotated with comments. Making the lights
blink twice as fast is simply halving the initial value set in R9, but making them blink twice as
slow involves decrementing another register, since the doubled value is 80000 and will not fit in a
two-byte word whose maximum value is 65536.

.include "msp430g2553.inc"

org 0xC000

START:

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #0x41, &P1DIR ; #01000001b (P1.6 == LED2, P1.0 == LED1)

mov.w #0x01, R8 ; #00000001b (start on LED1)

REPEAT:

mov.b R8, &P1OUT

xor.b #0x41, R8 ; #00000001b -> #01000000b -> ... (LED1 -> LED2 -> ...)

mov.w #40000, R9 ; counts to decrement before blink

mov.w #40000, R10 ; counts to decrement (2nd dec, since max val is 65536)

WAITER1:

dec R9

jnz WAITER1 ; R9 not yet 0

WAITER2:

dec R10

jnz WAITER2 ; R10 not yet 0

jmp REPEAT ; R9, R10 == 0; blink other LED

org 0xfffe

dw START ; set reset vector to ’init’ label

2.3 Program 2

To make the LEDs cycle in the order

none -> red -> green -> both -> none,

the output to P1OUT needs to cycle through

0000 0000 -> 0000 0001 -> 0100 0000 -> 0100 0001 -> 0000 0000.

4

Notice that the first and third transitions

0000 0000 -> 0000 0001 and 0100 0000 -> 0100 0001

can be done by applying xor 0000 0001, while the second and fourth transitions

0000 0001 -> 0100 0000 and 0100 0001 -> 0000 0000

can be done by applying xor 0100 0001. Rather than using two registers to save these two
constants, notice that in turn

0000 0001 -> 0100 0001 -> 0000 0001

can be done by applying xor 0100 0000. Therefore we initialize a register, chosen here to be R8,
to 0100 0001 (since the LEDs begin in the both-on state), and after we have applied xor R8 on
the output to obtain the next output, 0000 0000, we apply xor 0100 0000 on R8 to get the next
value of R8, 0000 0001, that should be xored with the next output, and so forth. Below is the full
program annotated with comments.

#include "msp430g2553.inc"

org 0x0C000

RESET:

mov.w #0x400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR ; all pins outputs except P1.3

mov.b #00001000b, &P1REN ; enable resistor for P1.3

mov.b #00001000b, &P1IE ; P1.3 set as an interrupt

mov.w #0x0049, R7 ; R7 = 0000 0000 0100 1001

mov.b R7, &P1OUT ; LED1, LED2 on

mov.b #0x0041, R8 ; value to xor with R7

EINT ; enable interrupts

bis.w #CPUOFF, SR

PUSH:

xor.w R8, R7 ; next LED state

xor.w #0x0040, R8 ; 0x0041 -> 0x0001 -> 0x0041

mov.b R7, &P1OUT ; set LEDs to new state

bic.b #00001000b, &P1IFG ; interrupt flag P1.3 set to 0

reti ; return from interrupt

org 0xffe4

dw PUSH ; interrupt from P1.3 button goes here

org 0xfffe

dw RESET ; interrupt from reset button goes here

5

