
PHYS 319

Labs 1 and 2 Notes

Jonathan Chan (15354146)

January 16, 2018

1 Lab 1

2 Lab 2

Some minor reminders:

• Remember to connect +5V and ground to 4-digit 7-segment display, and ground (not VCC)
to microprocessor

• mspdebug needs to be exited (with CTRL-D) for the program to run

2.1 Student Number

There needs to be a move to P1OUT for setting each digit. Since the strobe also needs to go from
low to high to actually set the digit, there are actually two moves for each digit. Below is the full
program for setting the display to 4146.

.include "msp430g2553.inc"

org 0xc000

START:

; setup

mov #0x0400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR

; set digits

mov.b #01100000b, &P1OUT ; xxx6

mov.b #01100001b, &P1OUT ; xxx6

mov.b #01000010b, &P1OUT ; xx46

mov.b #01000011b, &P1OUT ; xx46

mov.b #00010100b, &P1OUT ; x146

mov.b #00010101b, &P1OUT ; x146

1



mov.b #01000110b, &P1OUT ; 4146

mov.b #01000111b, &P1OUT ; 4146

; disable

bis.w #CPUOFF, SR

org 0xfffe

dw START

2.2 Program 1

Below is the full program annotated with comments. Making the lights blink twice as fast is simply
halving the initial value set in R9, but making them blink twice as slow involves decrementing
another register, since the doubled value is 80000 and will not fit in a two-byte word whose maximum
value is 65536.

.include "msp430g2553.inc"

org 0xC000

START:

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #0x41, &P1DIR ; #01000001b (P1.6 == LED2, P1.0 == LED1)

mov.w #0x01, R8 ; #00000001b (start on LED1)

REPEAT:

mov.b R8, &P1OUT

xor.b #0x41, R8 ; #00000001b -> #01000000b -> ... (LED0 -> LED1 -> ...)

mov.w #40000, R9 ; counts to decrement before blink

mov.w #40000, R10 ; counts to decrement (2nd dec, since max val is 65536)

WAITER1:

dec R9

jnz WAITER1 ; R9 not yet 0

WAITER2:

dec R10

jnz waiter2 ; R10 not yet 0

jmp repeat ; R9, R10 == 0; blink other LED

org 0xfffe

dw START ; set reset vector to ’init’ label

2.3 Program 2

To make the LEDs cycle in the order
none -> red -> green -> both -> none,

the output to P1OUT needs to be
0000 0000 -> 0000 0001 -> 0100 0000 -> 0100 0001 -> 0000 0000.

Notice that

2



0000 0000 -> 0000 0001 and 0100 0000 -> 0100 0001

can be done with an xor on 0000 0001, and
0000 0001 -> 0100 0000 and 0100 0001 -> 0000 0000

can be done with an xor on 0100 0001. Rather than using two registers to save the two different
values to xor on, notice that in turn

0000 0001 -> 0100 0001 -> 0000 0001

can be done with an xor on 0100 0000. Then we initialize a register (R8 here) to 0000 0001, and
after we have xored it with the output, we xor 0100 0000 on R8 to get the next value that should
be xored with the output. Below is the full program annotated with comments.

#include "msp430g2553.inc"

org 0x0C000

RESET:

mov.w #0x400, SP

mov.w #WDTPW|WDTHOLD, &WDTCTL

mov.b #11110111b, &P1DIR ; all pins outputs except P1.3

mov.b #00001000b, &P1REN ; enable resistor for P1.3

mov.b #00001000b, &P1IE ; P1.3 set as an interrupt

mov.w #0x0049, R7 ; R7 = 0000 0000 0100 1001

mov.b R7, &P1OUT ; LED1, LED2 on

mov.b #0x0041, R8 ; value to xor with R7

EINT ; enable interrupts

bis.w #CPUOFF, SR

PUSH:

xor.w R8, R7 ; next LED state

xor.w #0x0040, R8 ; 0x0041 -> 0x0001 -> 0x0041

mov.b R7, &P1OUT ; set LEDs to new state

bic.b #00001000b, &P1IFG ; interrupt flag P1.3 set to 0

reti ; return from interrupt

org 0xffe4

dw PUSH ; interrupt from button goes here

org 0xfffe

dw RESET ; interrupt from reset button goes here

3


